
A Resilient Fog-IoT Framework for Seamless
Microservice Execution

Md Whaiduzzaman∗, Alistair Barros†, Ahmedur Rahman Shovon‡, Md Razon Hossain§, and Colin Fidge¶
Queensland University of Technology, Brisbane, Australia∗†¶

Jahangirnagar University, Dhaka, Bangladesh ‡§

Email:∗wzaman@juniv.edu, †alistair.barros@qut.edu.au, ‡shovon.sylhet@gmail.com, §hossainmdrazon@gmail.com, ¶c.fidge@qut.edu.au

Abstract—Microservices have been proposed as the software
architecture style for fog-IoT network applications ecosystems.
Recently, microservices have been extensively used in fog-IoT
ecosystems. Here, master-worker fog-based frameworks have
been widely adopted in the ecosystem to ensure resilience.
However, the architecture’s reliability, including the possibility
of the master fog node failure, and service unavailability, is not
reflected adequately in the literature. Therefore, we present a
resilient master-citizen fog-IoT framework to ensure efficient
resource management and overall system reliability. In this
work, we develop a master fog node and layered citizen nodes
in the distributed ecosystem. Our fault-tolerant fog-IoT-based
microservice execution framework can ensure efficient recovery
from a single point of failure, unavailability, and unexpected
events in the master fog node, which means the network can
continue working after a system failure. We use different fault-
tolerance strategies and algorithms for selecting the master fog
node that synchronizes with other citizen fog nodes and the
upper layer cloud for efficient microservice execution. Finally,
we developed and implemented a resilient fog-IoT network for
providing uninterrupted services in the event of master fog node
failure.

Index Terms—Microservice, Fog Computing, IoT, Fault To-
larance framework

I. INTRODUCTION

Fog computing is the new complement of the cloud comput-
ing paradigm and becoming popular day by day. [1]. Enterprise
systems are now coming closer to the cloud with the help of
the new trend of fog computing. [2]. Fog Computing, as pro-
posed by Cisco [3] has shifted the centralized cloud computing
model through a diffuse network of lightweight nodes as the
underpinning infrastructure of the Internet of Things(IoT). It
enables software to execute on small, low-powered devices of
fog nodes connected closely to IoT objects at the granularity
of microservices. With the emerging Fog computing and IoT,
models the technological world has shifted to a new paradigm.
Many applications, architectures, frameworks come together
with mobile devices to complement this new paradigm [4, 5].
These IoT devices use many applications and programs to
solve their tasks quickly. However, due to limited resources,
these devices offload their jobs and use the services offered
by Fog IoT environments [6, 7, 8].

The advantage of the layered architecture of the cloud fog
IoT ecosystem is demonstrated and discussed in literature
which can perform efficient task scheduling and faster appli-
cation execution [9]. Recent trends include growing interest

in using microservices architecture to address Fault Tolerance
(FT) in IoT ecosystems[10]. However, there is a failure to
address fault tolerance issues for fog IoT ecosystems in the
current literature. We understand that a Master fog node plays
a vital role in this architecture [8]; hence to avoid a single
point of failure, we need planning and a proper fault tolerance
mechanism in place to protect the essential Master fog node
[11] in the framework.

The master-worker framework is introduced to accelerate
the efficiency of the system. The master fog resides among
the general-purpose fogs, either horizontally or vertically,
and responsible for performing essential tasks such as API
request scheduling, communication with the cloud, resource
management. However, the failure of the master node hinders
these tasks and, in the worst case, can shut down the whole
system. Therefore, our proposed framework focuses on the fog
layer to increase the resilience of the system.

We design the selection criteria considering the dynamic
available resources of workers fog node to estimate the best
master fog node selection. In addition, we periodically collect
the available resources among the fog colony and decide the
possible primary, secondary and tertiary master fog nodes.
We place relevant algorithms and explain the all possible
steps and explain the situations by comparing resource. In this
process, we consider the essentials microservices movement
and exceptions to essentials services running in the citizen fog
nodes. We also consider the master fog nodes responsibility
and database transfer strategy to secondary , tertiary and cloud
to mitigate the strategics plan to recovery from the resilient
fault tolerance system.

We ensure storing the snapshots of all fog devices’ health
statuses in each device synchronized with the master fog and
the cloud application at a regular interval. Our framework
analyze each fog node’s score whenever we need to select a
primary master fog. The score is calculated from the last thirty
snapshots of data from each fog node. The scoring weight from
the configuration file at run time can be modified based on the
system requirements. Each fog node’s score is calculated based
on these factors and the configuration file’s scoring weights.
We selected the master fog and candidate master fog nodes
from the top scores and selection score is synchronized with
the cloud application if the master fog, the secondary master
fog, and the tertiary master fog become unavailable. We assess



our framework’s fault tolerance for several scenario illustrates
CPU usage and memory usage of the Kubernetes edge cluster.
Overall, the system remains alive in all four scenarios and
effectively handles the single point of failure.

The aim of this research is to design and validate process for
master fog node replacement in a fault tolerant fog computing
network. We focus on the Master fog node failure, a new
master fog node, a secondary and tertiary master fog selection,
and ensuring resiliency in the recovery process within in a
minimal time. We propose a fault tolerance framework to
provide resilience and support to the user when the system
failure occurs or the system unavailability; still, the user enjoys
the seamless connectivity and minimal downtime experienced
by the framework.

Therefore, we address these research objectives:
RO1: To select contingent master fog nodes based on

a periodic computational resource capacity estimation
strategy in Fog-IoT ecosystems.

RO2: To prepare contingent master fog nodes for effi-
cient enactment of master fog reallocation when a failure
occurs

This research presents a fault-tolerant microservice cloud
fog-IoT ecosystem framework to avoid single point of Master
node failure and ensure uninterrupted service availability. We
discuss the framework’s internal components, and segregate
the Master and citizen fog working component functionality.
We also devise several algorithms to select the possible master
fog node to recover the failure point. Our experimental results
show that we can provide fault-tolerant seamless, resilient,
uninterrupted services. Here, Table I presents the abbreviations
used throughout the paper.

In this paper, our contributions are as follows:
1) We design a resilient master fog node selection process

that provides seamless execution in a fog-IoT eco sys-
tem.

2) We implement our developed master fog selection algo-
rithm that ensures uninterrupted services in the case of
master fog node failure.

3) We experiment with practical data and validate that our
system can run smoothly and seamlessly in a fault-
tolerant environment.

Essentials abbreviations used in the paper are enlisted in
Table I. The rest of the paper is organized as follows: Section
2 represents the background and related works; Section 3
presents the fog-IoT framework overview; Section 4 presents
the system design and modeling formulation; Results and
discussion are highlighted in Section 5; and finally, Section
6 concludes our work with possible future research directions.

II. RELATED WORK

This section discusses related works, issues, problems,
and possibilities of several previous research works in fault
tolerance and resilient networks in the cloud, fog, and IoT
environments.

TABLE I: Essential Abbreviations
Short Form Full Form or definition

PMF Primary Master Fog
SMF Secondary Master Fog
TMF Tertiary Master Fog
CF Citizen Fog
WF Worker Fog
MS Microservices
IoT Internet of Things

CPU Central Processing Unit
FT Fault Tolereant

FTSM Fault Tolerant Scheduling Method
IoTEF Intenet of Things Edge Cloud Federation

CEFIoT Cloud and Edge Fog Tolerant IoT
FTIoT Fault Tolerant IoT
TBFC Tree Based Fog Computing

Asad Javed et al. [11] proposed a novel fault-tolerant archi-
tecture CEFIoT for IoT applications by adopting state-of-the-
art cloud technologies and deploying them for edge computing.
They solved the data fault tolerance issue by exploiting the
Apache Kafka publish/subscribe platform as the unified high-
performance data replication solution. Also, the authors point
out Masternode, Worker, or citizen fog node with Kubernetes
orchestration. Umar Ozeer et al. [12] transferred state saving
techniques based on an uncoordinated checkpoint, messages
log, and function call record for stateful IoT applications in the
fog, taking into account the specifics of the environment. Kun
Wang et al. [13] proposed a Reduced Variable Neighborhood
Search (RVNS)-based sEnsor Data Processing Framework
(REDPF) to enhance data transmission and processing speed
reliability. Functionalities of REDPF include fault-tolerant data
transmission, self-adaptive filtering, and data-load-reduction
processing.

Alexander [14] proposed a framework based on a mi-
croservices architecture that provides reactive and proactive
FT support with two microservices: Real-Time FT, complex
event processing and analyzing stream data for rapid error
recovery; and Predictive FT, using machine learning to learn
fault patterns and mitigate future faults before they occur. Shu-
Ching et al. [15] proposed a protocol to achieve all fault-free
nodes with minimal message exchanges and tolerate the max-
imum number of a dormant and malicious faulty component
named IFCAP. Jitender Grover et al. [16] proposed a novel
agent-based reliable and fault-tolerant hierarchical IoT-cloud
architecture, which is distributed over four levels (cloud-fog-
mist-dew) based on the end IoT device’s processing power and
distance. Nader et al. [17] investigated the issues of reliability
and fault tolerance for fog platforms supporting IoT-based
smart cities. Oma et al. [18] proposed a fault tolerance tree-
based fog computing (FT tree-based fog computing (FTBFC)
model using minimum energy and execution time to a new
fault-tolerance strategy. Asad et al. [19] proposed a new In-
ternet of Things Edge-Cloud Federation (IoTEF) architecture
for multi-cluster IoT applications by adapting Cloud and Edge
Fault-Tolerant IoT (CEFIoT) layered design.

We found three layers of Fog IoT and Cloud framework
ensure faster processing and efficient resource management



from the above discussion. Several pieces of research show the
potentiality and introduced the fault tolerance system in several
ways. However, there is a lack of a combined efficient Master
Fog node three-layer system and a resilient fault tolerance
system. We are motivated to harness the efficient resource
utilization framework of three-layer architecture with Master
Fog node IoT ecosystem incorporating the fault tolerance
capability to achieve an improved resilient efficient fault-
tolerant system.

III. FOG-IOT FRAMEWORK

This section presents our overall fog-IoT and cloud frame-
work overview and discusses how they are tied up with each
other and work together. Figure 1 shows the overview of our
new framework. A three-layer fog-IoT framework consists of
IoT devices in the first layer, fog devices in the second layer,
and cloud in the third layer.

A. First Layer: IoT and end devices

The first layer consists of IoT and end devices, making API
requests to the Fog layer. Each request goes through the Auth
service and API gateway. The Auth service then authenticates
the requests, and the API gateway routes the request to the
corresponding citizen fog.

B. Second Layer: Fog nodes

The second layer consists of two types of fogs, a Master
Fog (MF) and a few Citizen Fog (CF) nodes. Citizen fogs
are the general-purpose fog nodes, and microservices run in
these citizen fogs. CFs has two more components, Request
Scheduler (RS) and Request Router (RR). The scheduler
receives the request and schedules the API requests for the
microservices. If the CF has overflowed with API requests,
the API request sends to the master fog.

There are three kinds of master fogs, Primary Master Fog
(PMF), Secondary Master Fog (SMF), and Tertiary Master Fog
(TMF). The Cloud selects these master fogs from citizen fogs
using the master selection algorithm (Algorithm 1). Only one
master fog is active at a time; at the beginning, the PMF stays
active. If PMF does not respond for a specific time, an SMF
takes over and announces itself as the master fog. If both the
PMF and SMF are not responding, TMF announces itself as
the master fog. If all three master fogs are not responding or
are down, cloud re-selects the master fogs from the rest of the
working citizen fogs using Algorithm 1.

Each master fog has three main components, Microservice
Migration Handler (MMH), MF Broadcaster (MFB), and CF
health Status Table (CST). Master fogs are a special kind
of node; therefore, when a citizen fog is selected as the
master fog, the MMH handles existing microservices’ mi-
gration. Moreover, the MFB handles the confirmations and
announcement of the active status of the master fog. The CST
keeps track of the resource and computation status of all the
citizen fog. If there is one or multiple eligible CF, a request is
sent to the CF with the most resource and computing ability.
The Master fog also sends the CST to the cloud application.

The following are the general responsibilities of an MF:
• Citizen fog Orchestration.
• Request handling from CFs and scheduling.
• Automatic application Deployment.
• Worker fog failure handling.
• Citizen fog health status management.
• Communication with the cloud and other MFs to share

its own state.

C. Third layer: Cloud

The Cloud application is responsible for selecting the master
fogs in two cases. The first case is setting up the framework
initially, and the second case is when all three master fogs are
not responding. The Master Fog Selector (MFS) uses the CST
data and runs Algorithm 1 to select the master fogs. This CST
data in the cloud is continuously updated and synchronized
by the MF. Moreover, the cloud also receives the alive signals
from all the MFs.

IV. SYSTEM DESIGN AND MODELING

This section discusses, outlines, and explains our system’s
design concepts, parameters, metrics, components, algorithms,
and model design.

A. Master Fog Selection Process

The Master fog is responsible for CF orchestration, schedul-
ing, and resource management. Therefore, the MF needs to
have a higher resource and computation ability. For simplicity,
the MF does not have any microservice running end device
application execution. To be eligible as an MF, the CF must
migrate its existing microservices. We assign each MF selec-
tion criteria as a weight that dynamically changes based on
the system status and fog node priority.

TABLE II: Master Fog selection criteria

Category Criteria

HW Configuration

Total RAM
Total ROM

Number of Processing Units
CPU Maximum Clock Speed

Snapshot Data
Current Available RAM
Current Available ROM

CPU Usage

1) Exception Criteria: There can be fog nodes dedicated to
some unique or critical tasks and should not be considered for
the Master Fog node. For instance, an authorization service, or
particular database, or a dedicated fog node for any particular
important service. These CFs will not be included in the MF
candidate list.

The cloud component, Master Fog Selector (MST), executes
our Master Fog Selection algorithm (Algorithm 1). For each
citizen fog, it calculates weighted points for each criteria by
using Equation 1 and Equation 2 in Section 4.3 below. Subse-
quently, it calculates the sum of weighted points and declares
the CF with the highest total as the Primary master fog, the
CF with the second-highest total is considered the secondary
master fog, and the third one is considered the tertiary master



API	Request

API	Request
API	Request

API	Request

API	Request

Auth	Service

API	Request

Citizen	Fog

Request
SchedulerKubernetes

Microservice	1

Microservice	2
Request
Router

Update	CF	Status	Table

PMF	Alive	Signal PMF	Alive	Signal

Primary
Master	Fog

CF	health	Status
Table

Microservice	
Migration
Handler

MF
Broadcaster

Citizen	Fog
MS1 MS1

Citizen	Fog
MS1 MS1

Citizen	Fog
MS1 MS1

Citizen	Fog
MS1 MS1

SMF	Alive	Signal

Secondary
Master	Fog

MMH CST MFB

Tertiary
Master	Fog

MMH CST MFB

Data	center

Master	Fog
Selector

Cloud

Fog	Layer

Alive	Signal	Transmission
among	Master	Fogs

API	Request	Transmission

CF	Status	Table	to	cloud	by	
the	Active	Master	Fog

API	Gateway

CF	is	sending	the	API	request	to
MF	that	it	cannot	execute

MF	is	re-routing	the	CF	requested
API	request	to	another	eligible	CF	

Fig. 1: Overview of our Fault Tolerant Framework

fog. The primary master fog is activated immediately as the
master fog and starts to send the alive signal to the other two
inactive master fogs. This selection algorithm executes in two
scenarios. The framework sets up for the first time when the
MST uses the pre-existing fog node resource status. Again,
the master fog node sends the citizen fog’s health status table
to the cloud whenever there is an update in the table. MST
uses this data to calculate and select master fogs.

B. Fault Tolerant Scenarios

Our framework can handle the MF’s unavailability scenarios
as follow:

Scenario 1: Everything is working fine. This is the best-
case scenario where the PMF is responding correctly.

Scenario 2: Primary Master Fog is unavailable. The
primary master fog broadcasts alive signals with a particular
time interval to the SMF, the TMF, and the cloud. If the
SMF does not receive three consecutive signals from PMF,
it declares itself as the primary MF in the network and starts
to send its own alive signal. To avoid multiple MF ambiguity,
the cloud synchronizes with other MFs. Algorithm 2 states
this fault-tolerant process.

Scenario 3: Both the Primary and Secondary MF are
unavailable. In this scenario, the TMF gets activated and



TABLE III: List of notations which are being used in Algo-
rithm 1, 2, 3, and 4

Notations
in Algorithm Description

CF A particular citizen fog
CFList List of citizen fogs
PMF Primary Master Fog
SMF Secondary Master Fog
TMF Tertiary Master Fog

exceptionList List of citizen fogs that are not allowed to be master fog
CFPointerMap List of selected CF mapped to corresponding Total Point

sortedCFList
Sorted CFPointerMap according to Total Point in
Descending Order

TRAM Total RAM
ARAM Available RAM
TROM Total ROM
AROM Available ROM
PU Processing Unit
CS Maximum CPU clock Speed
CU CPU Usages
IS Image Size of the migrating services in a particular CF

SPP
Sum of weighted Points of resource and
Performance criteria

c
Number of signals needed to identify whether any other MF
is alive or not

isMasterFog
Defines whether self (PMF/SMF/TMF) is announced as
Master fog or not. Default value is False

Algorithm 1: Master Fog Selection Algorithm

1 foreach CF in CFList do
2 if CF not in exceptionList then
3 criteriaList = 〈TRAM , ARAM , TROM ,

AROM , PU , CS, CU〉
4

5 foreach criteria in criteriaList do
6 weightedPointOfcriteria ← calculate

point of the criteria using Equation 1 *
weightcriteria

7 SPP ← weightedPointOfcriteria

8

9 weightedPointOfIS ← calculate point of the
CFIS using Equation 2 * weightIS

10 weightedSPP ← SPP * weightSPP
11 totalPoint← weightedSPP +

weightedPointOfIS
12

13 Add totalPoint to CFPointerMap[CF ]

14 sortedCFList← Sort CFPointerMap In
Descending Order

15 primaryMasterFog ← sortedCFList[0]
16 secondaryMasterFog ← sortedCFList[1]
17 tertiaryMasterFog ← sortedCFList[2]

follows the fault-tolerant Algorithm 3. Similar to the PMF,
SMF also broadcasts an alive signal with cloud and the TMF.
If the TMF does not receive three consecutive signals from
both the PMF and SMF, it asks the cloud for confirmation. If
the cloud confirms that the other two MFs are down, the TMF
declares itself as MF and starts sending a message.

Scenario 4: All three MFs are unavailable. The cloud

Algorithm 2: Master Fog Fault Tolerant Scenario 1,
PMF Failed

1 Acting Node: Secondary Master Fog
2 iterator ← 0
3 while System is alive do
4 Send Self Active Message To Tertiary MF
5 if isMasterFog then
6 Send CF Status to Cloud
7 Send Self Active Message To Cloud

8 else
9 if iterator < c then

10 PMFResponse← Check if PMF is alive
11 if PMFResponse is false then
12 iterator ← iterator + 1

13 else if iterator = c then
14 isMasterFog ← true
15 Declare SMF As Master Fog

16 else
17 iterator ← 0

Algorithm 3: Master Fog Fault Tolerant Scenario 2,
Both the PMF and SMF Failed

1 Acting Node: Tertiary Master Fog
2 iterator ← 0
3 while System is alive do
4 if isMasterFog then
5 Send CF Status to Cloud
6 Send Self Active Mesage To Cloud

7 else
8 if iterator < c then
9 PMFResponse← Check if Primary MF

is alive
10 SMFResponse← Check if Secondary

MF is alive
11 if PMFResponse and SMFResponse

are false then
12 iterator ← iterator + 1

13 else if iterator = c then
14 if PMFResponse and

SMFResponse are false then
15 isMasterFog ← true
16 Declare TMF As Master Fog

17 else
18 iterator ← 0

19 else
20 iterator ← 0



follows Algorithm 4 and handles this disaster scenario. The
cloud subscribes to each MF’s alive signal, and if it does not
receive any signal from any of the MFs for three consecutive
times, it pings all three MF to be sure that the MFs are down.
If no MF responds back, the cloud starts the MF selection
procedure from the rest of the CFs.

Algorithm 4: Master Fog Fault Tolerant Scenario 3,
All the MFs Failed

1 Acting Node: Cloud application
2 PMFResponse← Check if Primary MF is alive
3 SMFResponse← Check if Secondary MF is alive
4 TMFResponse← Check if Tertiary MF is alive
5 if PMFResponse, and SMFResponse are false

then
6 if TMFResponsen is false then
7 Add PMF , SMF , and TMF to

exceptionList
8 Start Master Fog selection process using

Algorithm 1

9 else
10 Approve TMF as Master Fog

C. Model

In this section, we present a mathematical model to rep-
resent the master fog selection procedure. Here, we consider
that all master fog nodes can handle all resources and reside
within the same local area network.

TABLE IV: List of the Model Notations

Symbol Description
f Individual fog node
F Set of fog nodes where f ∈ F
Hf Set of MF selection parameters of a fog node f

Hp
f ,H

n
f

Set of positive and negative MF selection parameters
respectively where Hp

f ⊂ Hf ,Hn
f ⊂ Hf

P(χ) Positive point factor of a resource parameter where χ ∈ Hp
f

Q(χ) Negative point factor of a resource parameter where χ ∈ Hn
f

ω(χ) Weight of a resource parameter where χ ∈ Hf

Wf Total points of f

Mp
Total memory capacity (in Bytes)
of random access memory (RAM)

Mr
Total memory capacity (in Bytes)

of read only memory (ROM)
P Processing unit
τ Maximum CPU clock speed
ψ Current CPU usage
I Respective image size of all microservices in f ∈ F

a) Environment and Notations: In our model, there is a
set of fog nodes F , where each fog node f ∈ F . The master
fog selection procedure depends on different parameters, and
we denote the set of parameters as Hf , where Hpf and Hnf
represents the set of positive and negative parameters relatively
(Hpf ⊂ Hf , Hnf ⊂ Hf ). The rest of the notations are presented
in Table IV.

b) Model: Here, we denote a fog node as

f = 〈Mp,Mr, P 〉

where Mp is RAM, Mr is ROM, and P is the number of
processing core.

Now, before calculating the eligibility of a master node, we
identify the set of parameters to consider. Here, we denote the
set of considered resource parameters as

Hf = 〈Mp,M
a
p ,Mr,M

a
r , P, τ, ψ, I〉

where, Ma
p is the relative available RAM, Ma

r is the relative
available ROM, τ is the relative maximum CPU clockspeed,
and ψ is the relative CPU usage of the fog nodes f ∈ F .
Here, I is the relative image size of the microservices in a fog
node. Here, relative measurement can vary based on different
environment configurations (Homogeneous or Heterogeneous).
For example, an administrator can sort nodes based on the
parameters and calculate relative parameter values for other
nodes based on the maximum or median parameter value (e.g.,
available memory size in bytes).

Now, not all high parameter values indicate high influences
while calculating the weighted point factors. That means a
few parameters have negative influences. Now, as Hf contains
both positive and negative influencing resource parameters, we
divide the positive and negative parameters as separate sets as

Hpf = 〈Mp,M
a
p ,Mr,M

a
r , P, τ〉

Hnf = 〈ψ, I〉

where, Hpf is the set of positive influencing resource pa-
rameters, and Hnf is the set of negative influencing resource
parameters.

Now, we want to calculate the point factor P(χ) for each
resource parameter χ ∈ Hpf as

P(χ) =

{
100 if χ = χmax

(χ ∗ 100)/χmax if χ < χmax

(1)

where χmax = max
(⋃

f∈F χ
)

and χ ∈ Hpf
Similarly, we want to calculate the point factor P(χ) for

each resource parameter χ ∈ Hnf as

Q(χ) =

{
100 if χ = χmin

(χmin ∗ 100)/χ if χ > χmin

(2)

where χmin = min
(⋃

f∈F χ
)

and χ ∈ Hnf
Mp, Ma

p , Mr, Ma
r , P , τ , and ψ are the resource attributes of

f . The weighted sum of the points of these resource attributes
is Tf .

Tf =
∑
χ∈Hp

f

[P(χ) · ω(χ)] +
∑
χ∈Hn

f

[Q(χ) · ω(χ)]

+P(ψ) · ω(ψ)



However, even if a fog node f has higher resources, it can
have microservices that migration can be overhead. Therefore
we provide weights to Tf and image size I . Now, the weighted
point factor Wf for each fog node f ∈ F is

Wf = [Tf · ω(T )] + [P(I) · ω(I)]

Now, to choose the potential master fog, our model elects
the fog node with the maximum weighted point factor, i.e.,
maxWf .

D. Framework Implementation

We implemented our framework using the Internet of Things
(IoT) devices and Amazon Web Services (AWS). The IoT
devices carry out responsibilities as master and citizen fogs.
The fog devices are interconnected using a singular network
and use the MQ Telemetry Transport (MQTT) protocol for
communication between the master fog and citizen fogs. The
RESTful API performs the communication between the fog
nodes and cloud applications over HTTPS protocol. We used
the following models of Raspberry Pi devices as fog nodes:
Raspberry Pi 400, Raspberry Pi 4 B 8GB, Raspberry Pi 4 B,
and Raspberry Pi 3 B+. Every inbound request was filtered
and authorized by the Auth Service and the API gateway.
The microservices were deployed in the citizen fogs while
the master fog maintained the citizen fogs health status in
real-time. The candidate master fogs’ check if the primary
master fog is active regularly. The fog nodes are a part of the
Kubernetes cluster to identify the health statuses individually
and collectively.

V. RESULTS AND DISCUSSION

We evaluated the implemented framework for a set of
fog devices with different hardware configurations which are
connected to a single network. In our scenario, the network is
immobile. The citizen fog health status reports were synced
with the cloud application for ensuring fault tolerance.

We answer the first question by looking into the related
Work, fog-IoT framework, and system design. We provide the
master fog selection process, fault tolerance scenarios, and
several detailed algorithms (Section III). We also consider
and present the design considerations, architecture, and im-
plemented algorithms in the same section.

We answer the second question by discussing the implemen-
tation overview and corresponding results based on practical
scenarios. Here, we discuss the fault-tolerant framework devel-
opment based on the algorithms. Then we present the graphs
of different scenarios with timing graphs of different system
resources such as CPU, and memory, and network utilization
before or after the master fog node failure. From these graphs,
we show that the fault-tolerant achievement or system can still
perform at almost the same level of performance or efficiency.

RO1: To select contingent master fog nodes based on
a periodic computational resource capacity estimation
strategy in Fog-IoT ecosystems.

We ensure storing the snapshots of all fog devices’ health
statuses in each device synchronized with the master fog and
the cloud application at a regular interval. Our framework
analyzed each fog node’s score whenever we needed to select
a primary master fog. The score was calculated from the last
thirty snapshots of data from each fog node. The scoring
weight was collected from the configuration file at run time,
and it could be modified based on the system requirements.
The list of criteria is shown in Table II. Each fog node’s
score was calculated based on these factors and the configu-
ration file’s scoring weights. We selected the master fog and
candidate master fog nodes from the top ten devices. This
selection score was synchronized with the cloud application
if the master fog, the secondary master fog, and the tertiary
master fog become unavailable.

RO2: To prepare contingent master fog nodes for effi-
cient enactment of master fog reallocation when a failure
occurs

We assessed our framework’s fault tolerance for each
scenario described in Section IV-B. Fig. 2 illustrates CPU
usage and memory usage of the Kubernetes edge cluster.
As we consider the fault tolerance of any master fog node
occurrences, we only consider the edge cluster. The x-axis
shows the time period in MM:SS format and the y-axis shows
the aggregated CPU usages percentage of our Kubernetes edge
cluster for each scenario in Fig. 2a, 2c, 2e, and 2g. Our
Kubernetes cluster had a total of 120 GB of random access
memory. The memory usage graphs in Fig. 2b, 2d, 2f, and
2h represents the aggregated memory usage at a certain time
for the listed scenarios. The data of these CPU usage and
memory usage graphs were collected from the Kubernetes
cluster dashboard.

Fig. 2a and 2b show the best-case scenario of the
framework when the master fog is active between the time
frame of 15:14 to 15:30. There is no spike in CPU usage
or memory usage within this time frame. Fig. 2c and 2d
show the second scenario between the time frame of 15:30 to
15:44. The primary master fog becomes unavailable at 15:36,
which causes a sharp fall in CPU usage and memory usage.
The CPU usage turns to be similar to before the incident at
15:38 as the secondary master fog claims the primary master
fog’s responsibilities. However, the memory usage remains
downward because of the loss of a fog node. Fig. 2e and
2f show the third scenario between the time frame of 15:44
to 15:58. The primary master fog becomes unavailable at
15:46, and the secondary master fog starts taking the master
fog’s responsibilities at 15:48. The secondary master fog then
becomes unavailable at 15:50, causing the tertiary master fog
to take responsibilities as the master fog node. The memory
usage graph of this scenario is declining as the master fog
nodes become available. In Fig. 2g we see a steady fall in
CPU usage as all the three master fog nodes fail from 17:16,
and eventually, as soon as the cloud handles the scenario,
the CPU usage increase after 17:22. Fig. 2h indicates the
decrease of the memory usage as the three master fog nodes
sequentially become unavailable. Overall, the system remains



(a) Scenario 1: CPU Usage (b) Scenario 1: Memory Usage

(c) Scenario 2: CPU Usage (d) Scenario 2: Memory Usage

(e) Scenario 3: CPU Usage (f) Scenario 3: Memory Usage

(g) Scenario 4: CPU Usage (h) Scenario 4: Memory Usage

Fig. 2: Fault Tolerance Assessment for different scenarios

alive in all four scenarios and effectively handles the single
point of failure.

VI. CONCLUSION

This research provides a fault-tolerant framework consider-
ing the initial concept of having a Master Fog (MF) node and
its impact on Cloud Fog IoT eco systems for microservices



execution. We established that a Master Fog node could play
a vital part in this architecture for efficient service provision-
ing, resource management, task scheduling, and microservice
execution with cloud and fog computing collaboration from
the literature review. Then we discussed how the Master
Fog plays the roles and how they usually behave in this
network. Then, we provided an MF selection process and
the Fault-tolerant system, which due to an unavailable and
Master Fog node or a system down, can be resilient and
provide regular services smoothly even if a fault took place.
Finally, we provide an MF selection process, several fault-
tolerant scenarios and demonstrated the system’s availability
and seamless microservices execution in this framework, even
in the event of a system failure.

ACKNOWLEDGMENT

This work is supported through the Australian Research
Council Discovery Project: DP190100314, “Re-Engineering
Enterprise Systems for Microservices in the Cloud”.

REFERENCES

[1] Md Whaiduzzaman, Anjum Naveed, and Abdullah Gani.
Mobicore: Mobile device based cloudlet resource en-
hancement for optimal task response. IEEE transactions
on services computing, 11(1):144–154, 2016.

[2] Md Whaiduzzaman, Shelia Rahman Tuly, Nadia Haque,
Md Razon Hossain, Alistair Barros, et al. Credit based
task scheduling process management in fog computing.
In PACIS, page 232, 2020.

[3] Amir M Rahmani, Tuan Nguyen Gia, Behailu Negash,
Arman Anzanpour, Iman Azimi, Mingzhe Jiang, and Pasi
Liljeberg. Exploiting smart e-health gateways at the
edge of healthcare internet-of-things: A fog computing
approach. Future Generation Computer Systems, 78:641–
658, 2018.

[4] Ahmedur Rahman Shovon, Shanto Roy, Tanusree
Sharma, and Md Whaiduzzaman. A restful e-governance
application framework for people identity verification in
cloud. In International Conference on Cloud Computing,
pages 281–294. Springer, 2018.

[5] Nishat Farjana, Shanto Roy, Md Julkar Nayeen Mahi,
and Md Whaiduzzaman. An identity-based encryption
scheme for data security in fog computing. In Proceed-
ings of International Joint Conference on Computational
Intelligence, pages 215–226. Springer, 2020.

[6] Md Whaiduzzaman, Khondokar Oliullah,
Md Julkar Nayeen Mahi, and Alistair Barros. Auasf:
An anonymous users authentication scheme for fog-iot
environment. In 2020 11th International Conference
on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–7. IEEE, 2020.

[7] Md Whaiduzzaman, Abdullah Gani, and Anjum Naveed.
Towards enhancing resource scarce cloudlet performance
in mobile cloud computing. Computer Science & Infor-
mation Technology, page 1, 2015.

[8] Md. Razon Hossain, Md. Whaiduzzaman, Alistair Bar-
ros, Shelia Rahman Tuly, Md. Julkar Nayeen Mahi,
Shanto Roy, Colin Fidge, and Rajkumar Buyya. A
scheduling-based dynamic fog computing framework for
augmenting resource utilization. Simulation Modelling
Practice and Theory, page 102336, 2021.

[9] Shreshth Tuli, Redowan Mahmud, Shikhar Tuli, and Ra-
jkumar Buyya. Fogbus: A blockchain-based lightweight
framework for edge and fog computing. Journal of
Systems and Software, 154:22–36, 2019.

[10] Mahyar Tourchi Moghaddam and Henry Muccini. Fault-
tolerant iot. In International Workshop on Software En-
gineering for Resilient Systems, pages 67–84. Springer,
2019.

[11] Asad Javed, Keijo Heljanko, Andrea Buda, and Kary
Främling. Cefiot: A fault-tolerant iot architecture for
edge and cloud. In 2018 IEEE 4th world forum on
internet of things (WF-IoT), pages 813–818. IEEE, 2018.

[12] Umar Ozeer, Xavier Etchevers, Loı̈c Letondeur,
François-Gaël Ottogalli, Gwen Salaün, and Jean-Marc
Vincent. Resilience of stateful iot applications in a
dynamic fog environment. In Proceedings of the 15th
EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, pages
332–341, 2018.

[13] Kun Wang, Yun Shao, Lei Xie, Jie Wu, and Song Guo.
Adaptive and fault-tolerant data processing in healthcare
iot based on fog computing. IEEE Transactions on
Network Science and Engineering, 2018.

[14] Alexander Power and Gerald Kotonya. A microservices
architecture for reactive and proactive fault tolerance in
iot systems. In 2018 IEEE 19th International Sympo-
sium on” A World of Wireless, Mobile and Multimedia
Networks”(WoWMoM), pages 588–599. IEEE, 2018.

[15] Shu-Ching Wang, Shih-Chi Tseng, Kuo-Qin Yan, and
Yao-Te Tsai. Reaching agreement in an integrated fog
cloud iot. IEEE Access, 6:64515–64524, 2018.

[16] Jitendcr Grover and Rama Murthy Garimella. Reliable
and fault-tolerant iot-edge architecture. In 2018 IEEE
SENSORS, pages 1–4. IEEE, 2018.

[17] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar.
Towards fault tolerant fog computing for iot-based smart
city applications. In 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC),
pages 0752–0757. IEEE, 2019.

[18] Ryuji Oma, Shigenari Nakamura, Dilawaer Duolikun,
Tomoya Enokido, and Makoto Takizawa. A fault-tolerant
tree-based fog computing model. International Journal
of Web and Grid Services, 15(3):219–239, 2019.

[19] Asad Javed, Jérémy Robert, Keijo Heljanko, and Kary
Främling. Iotef: A federated edge-cloud architecture for
fault-tolerant iot applications. Journal of Grid Comput-
ing, pages 1–24, 2020.


	Introduction
	Related Work
	Fog-IoT Framework
	First Layer: IoT and end devices
	Second Layer: Fog nodes
	Third layer: Cloud

	System Design and Modeling
	Master Fog Selection Process
	Exception Criteria

	Fault Tolerant Scenarios
	Model
	Framework Implementation

	Results and Discussion
	Conclusion

