IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

Topology assisted clustering of temporal fMRI
brain networks with use-case in mitigating
non-neural multi-site variability

AHMEDUR RAHMAN SHOVON', SIDHARTH KUMAR?, and GOPIKRISHNA DESHPANDE?

! Department of Computer Science, University of Illinois Chicago, Chicago, IL 60607 USA (e-mail: ashov@uic.edu)

2Department of Computer Science, University of Tllinois Chicago, Chicago, IL 60607 USA (e-mail: sidharth@uic.edu)

? Auburn University Neuroimaging Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
Department of Psychological Sciences, Auburn University, Auburn, AL, USA

Alabama Advanced Imaging Consortium, Birmingham, AL, USA

Center for Neuroscience, Auburn University, Auburn, AL, USA

Department of Heritage Science and Technology, Indian Institute of Technology Hyderabad, India

Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India

Corresponding author: Gopikrishna Deshpande (e-mail: gzd0005@auburn.edu).

ABSTRACT Using temporal analysis of fMRI (functional Magnetic Resonance Imaging) data, we can
characterize dynamic changes in brain connectivity over time. However, dynamic temporal analysis of fMRI
data is challenging due to the high dimensionality of the datasets. Another fundamental challenge of dynamic
temporal analysis of fMRI is the presence of non-neural artifacts that add sources of variation in the data that
are not directly related to brain activity. For example, when data are acquired at different scanners at different
temporal sampling rates and later analyzed as a single dataset, we have to contend with different number
of image snapshots for different subjects. Also, high-frequency scans lead to more fine-grained temporal
snapshotting than low-frequency scans. These factors can obscure true neural signals and lead to inconsistent
characterization of dynamic brain connectivity across scans. Existing graph-based solutions often struggle
with parameter sensitivity, since their outcomes depend heavily on selecting an arbitrary correlation threshold
for defining network edges. In contrast, topological data analysis (TDA) sweeps across all threshold values
to track the persistence of connectivity features, making it more robust for capturing fine-grained temporal
dynamics. Clustering methods become imperative in this context as they offer a powerful means to uncover
underlying structures within the high-dimensional temporal data. We address these challenges by developing
a topological data analysis based temporal clustering pipeline targeted for dynamic functional connectivity
derived from fMRI datasets that can preserve the dynamics of the temporal datasets and mask out the non-
neural variability induced by varying sampling rates. The TDA-based pipeline extracts robust features that
are invariant to non-neural noise and uses them to perform temporal clustering.

We evaluate our framework by performing temporal clustering of resting-state fMRI-derived dynamic
functional connectivity brain networks obtained from 316 subjects, each of whom was scanned thrice using
different temporal sampling periods. The efficacy of our TDA-based pipeline is compared against three
alternative approaches: direct time-series clustering, PCA-based dimensionality reduction and clustering,
and a traditional fully connected network analysis pipeline with MDS-based dimensionality reduction.
Additionally, we demonstrate that for a majority of cases, the number of clusters remains consistent for
the same subjects scanned at different temporal sampling rates— showcasing the greater robustness of our
TDA-based pipeline compared to other pipelines. The TDA pipeline achieved higher overlaps (59 %) in
optimal cluster numbers across sampling cohorts, as well as higher pairwise similarity (74-77 %) between
subjects’ cluster solutions. This indicates that incorporating network topology via TDA enables more robust
clustering of temporal fMRI datasets despite changes in sampling rates. Furthermore, we validate our method
on a clinical dataset (ADHD-200). The TDA-based pipeline successfully captures consistent clustering
patterns across different sites and scanning protocols, with higher stability of cluster assignments (> 80%
similarity) and better separation of subject-level dynamics compared to existing approaches. This reinforces
the method’s robustness in multi-site, multi-condition settings. Our results demonstrate that incorporating
network topology via TDA significantly enhances the reliability of temporal clustering in fMRI studies,
offering a robust framework for studying brain dynamics across heterogeneous acquisition settings.
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I. INTRODUCTION

Temporal fMRI (functional Magnetic Resonance Imaging)
analysis [1], [2] is a technique used to study brain activ-
ity over time, with a focus on capturing changes in neural
activity as they unfold during various cognitive tasks or in
resting state conditions. Resting-state functional MRI (rs-
fMRI), in particular, examines spontaneous fluctuations in
brain activity that occur when a subject is at rest and not
performing a specific task. This approach aims to identify
intrinsic functional connectivity patterns within the brain,
which can reveal networks and interactions that are present
even in the absence of external stimuli. Temporal resting-
state fMRI analysis is crucial for understanding how the brain
processes information dynamically and how the interactions
between different brain regions change with time, referred to
as dynamic functional connectivity (DFC). It has been shown
that DFC is very important for characterizing the healthy
brain [3], [4], as well as in various brain disorders [5]-[7].

Temporal fMRI data typically has a temporal resolution on
the order of hundreds of milliseconds to a couple of seconds,
with each time point representing a snapshot of brain activ-
ity at a particular moment during the scan. DFC calculated
from rs-fMRI data sampled at different rates tends to capture
underlying dynamics evolving at different scales. Also, rs-
fMRI data with higher sampling frequency tends to have more
time points compared to that sampled at lower frequency
for the same experimental duration. More time points tend
to increase the robustness of DFC estimates. Given these
factors, DFC calculated from rs-fMRI data sampled at dif-
ferent frequencies are not comparable. This is problematic
since different groups tend to have different sampling rates
owing to other factors, such as the capabilities of the MRI
scanner as well as SNR available for a given field strength and
field of view. Given the ever-increasing demands on sample
size, pooling data acquired from multiple sites has become
a priority, but that seems impractical as data across sites
is not acquired using the same sampling frequency. Here,
we seek to address this problem. Our reasoning is that a
video captured at two different frame rates must convey the
same content, even though they might not be of the same
quality. Our quest is to devise a method that would capture
the underlying content correctly, irrespective of how fast or
slow the temporal dynamics are sampled. Obviously, DFC
is not doing this job. Instead, we propose to use topological
data analysis (TDA), which has been shown to characterize
the structure underlying the data, which may be invariant to
how the data is acquired [8].

Within the domain of functional brain imaging research,
there is a growing trend towards the adoption of topological
data analysis (TDA), an algebraic topology-based mathemat-
ical approach [9]. More recently, topological data analysis
tools such as persistent homology (PH) have been utilized
to study complex networks [10] including fMRI network
dynamics [11]-[14]. The persistence of topological features
over a range of spatial scales provides insight into the robust-
ness and stability of network architecture. Persistent homol-
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ogy generates topological barcodes that serve as a quantitative
fingerprint for complex networks. Specifically, persistent ho-
mology tracks the emergence and disappearance of topologi-
cal features such as connected components, loops, and higher-
dimensional cavities across a range of thresholds applied
to the network. Importantly, statistical distances between
barcodes, such as the Wasserstein distance(WD) [15], [16],
can be computed to quantitatively compare network topolo-
gies robustly. Thus, persistent homology barcodes provide
a distinctive topological signature and metric for interrogat-
ing complex network architecture over the traditional graph-
based tools [8]. Recent studies have further extended the use
of TDA to unsupervised learning and clustering applications.
For example, TDA-based clustering of functional brain net-
works has been successfully applied to Alzheimer’s disease
cohorts, revealing significant associations between functional
topology and brain morphometry using Wasserstein distance
kernels [17]. In task-based fMRI, TDA pipelines have out-
performed traditional vectorization methods in classifying
condition-specific activity, highlighting their ability to cap-
ture individualized functional profiles [18]. More broadly,
TDA-based classifiers have shown promising results across
domains like trajectory classification and imbalanced multi-
class datasets, underscoring the versatility and power of topo-
logical representations in complex data settings [19], [20]. We
harness this capability to compare the similarities of temporal
dynamics of brain networks extracted from different sampling
periods. We develop a TDA-based statistical data processing
pipeline targeted for temporal fMRI datasets that preserves
the temporal dynamics of rs-fMRI datasets with the ability
to mask out the non-neural variability induced by varying
temporal sampling rates.

We evaluate the efficacy of our framework using three
data cohorts, each of which corresponds to rs-fMRI data
acquired for a subject at a different temporal sampling rate.
The input to our pipeline comprises functional connectivity
networks (FCNs) derived from rs-fMRI data acquired from
316 subjects, scanned at three temporal frequencies: fj,n =
645ms, finedium = 1400ms, and fi,, = 2500ms. High temporal
frequency (fhign = 645ms) corresponds to fine-grained snap-
shotting, yielding a total of 754 time-steps; medium temporal
frequency (fineqium = 1400ms) scan yields 336 time-steps; and
on the other end of the spectrum is low-frequency scans of
Jiow = 2500ms, which yields 86 time-steps. The total number
of adjacency matrices (FCNs) used in our study is therefore
371,616 (= 316 x 754 for fgn + 316 X 336 for fuedium
+ 316 x 86 matrices for f,,). In essence, our statistical
pipeline deals with a complex high-dimensional space, the
three cohorts are each 4-dimensional spaces, of resolution
113 x 113 X timestep# x subjects#. 113 x 113 corresponds
to the spatial resolution of each of the individual FCN (adja-
cency matrix), capturing the pairwise connectivity strengths
among the 113 spatial regions of the brain. The timestep# is
respectively 754, 336, and 86 for the three temporal frequen-
cies fhigh, finedium, and, fiow. subject# is 316. Demonstrating
any notion of similarity across such a high-dimensional space
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is a challenging task, which is further exacerbated by the fact
that the resolution across the three spaces varies (along the
timestep7# dimension). To solve this challenge, we rely on a
well-established notion that the resting-state brain typically
oscillates between a handful of discrete states. We develop a
statistical pipeline that uses persistent homology from TDA
to gradually reduce the high-dimensional temporal data to
two dimensions — which is then reduced further to a one-
dimensional scalar quantity that captures the total number of
clusters. The novelty of this paper is twofold: (1) developing a
statistical framework based on TDA techniques to effectively
reduce the complex high dimensional space into simple 1D
space (corresponding to the number of clusters), and (2)
demonstrating that the number of temporal clusters of same
subjects across the three temporal sampling rates is indeed
the same, unlike existing methods.

To further evaluate the performance of our TDA pipeline,
we developed three alternative statistical data analysis
pipelines that utilize the same datasets. These pipelines repre-
sent different approaches to data processing and dimensional-
ity reduction that have been used traditionally, allowing for a
comprehensive comparison of our TDA pipeline against other
established methods.

1) Direct time-series clustering pipeline: The first
pipeline employs a direct clustering across time, where
the original time-series data is reshaped into a suitable
format for clustering algorithms. This direct approach
bypasses the need for dimensionality reduction, retain-
ing the full temporal dynamics of the data.

2) PCA-Based dimensionality reduction and clustering
pipeline: The second pipeline utilizes principal compo-
nent analysis (PCA) to reduce the dimensionality of the
time-series data before applying a clustering algorithm.
PCA identifies the principal components, which are
linear combinations of the original features that capture
the maximum variance in the data. By retaining only the
most significant principal components, PCA reduces
the dimensionality while preserving the essential infor-
mation for clustering.

3) Traditional dynamic FCN analysis pipeline with
MDS-based dimensionality reduction: The third
pipeline adopts a traditional dynamic FCN (dFCN)
analysis approach similar to our TDA pipeline with
multidimensional scaling (MDS) for dimensionality re-
duction. This pipeline calculates the pairwise correla-
tion coefficients between all 113 brain regions at every
time point, resulting in a temporally varying correlation
matrix. MDS is then applied to the correlation matrix to
reduce its dimensionality while preserving the under-
lying connectivity patterns. This approach retains the
inter-subject connectivity information, which differs
from the aforementioned pipelines.

To determine the appropriate number of clusters for our
TDA and the three nonTDA pipelines, we employ the k-
means clustering algorithm in conjunction with the silhouette
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criterion. Since the number of clusters is insufficient to ef-
fectively capture the similarities between different temporal
sampling periods, we conduct cluster distance comparisons
both across the data cohorts (fuigh, finedium> and fip,,) and be-
tween individual data cohort pairs (fiigh - fimediums fiow = finediums
and fpien - fiow). We further evaluate the efficacy of the TDA
pipeline with a real clinical dataset. Detailed descriptions
of these pipelines and statistical methods can be found in
Section IIT and Section I'V.

Our key contributions include:

1) Novel TDA pipeline for preserving temporal dy-
namics: We introduce a novel topological data analysis
(TDA) pipeline specifically designed for processing
resting state fMRI datasets that preserves the temporal
dynamics of functional connectivity networks, enabling
more accurate and robust analysis of brain connectivity
patterns.

2) Evaluate pipeline accuracy: We evaluate the perfor-
mance of our TDA pipeline on a resting state fMRI
dataset comprising 371,616 adjacency matrices from
316 subjects at three temporal frequencies. To en-
sure the efficacy of the TDA-based pipeline, we com-
pare it with three alternative approaches: direct time-
series clustering, PCA-based dimensionality reduction
and clustering, and traditional fully connected network
analysis pipeline with MDS-based dimensionality re-
duction technique.

3) Robustness to non-neural variablity: Additionally,
we investigate the robustness of the TDA pipeline to
variations in data acquisition parameters, specifically
examining the impact of temporal sampling rates mit-
igating the influence of non-neural variability on tem-
poral fMRI datasets.

4) Validation on multi-site ADHD dataset: We further
validate our method on the ADHD-200 dataset to test
generalizability in a multi-site setting with heteroge-
neous scanning protocols. The TDA pipeline achieves
higher inter-site consistency in cluster structure and
better subject-level reproducibility, confirming its ap-
plicability to broader clinical and developmental neu-
roscience settings.

5) Open-source implementation for reproducibility:
We open-source the source code, documentation, and
data for all components of our work on GitHub (https://
github.com/harp-lab/TemporalBrainPH/), ensuring re-
producibility and accessibility.

The remainder of this paper proceeds as follows. First,
Section II provides background on related work and the pro-
gression of topology-based functional connectivity network
analysis. Next, Section III introduces our proposed end-to-
end topological data analysis pipeline for temporal brain rs-
fMRI data, and Section IV describes the nonTDA-based data
processing pipelines for comparison. Section V then presents
an evaluation of our TDA pipeline by applying it to analyze
temporal dynamics in resting-state fMRI datasets. Finally,
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Section VI offers a discussion of the results and implications,
and Section VII concludes with a summary of our contribu-
tions and directions for future work.

Il. RELATED WORK

The application of topological data analysis (TDA) in net-
work analysis extends beyond conventional graph theory, har-
nessing computational topology tools to characterize network
or data structure architectures with greater adaptability [21].
TDA-driven technique has also demonstrated encouraging
outcomes in modeling transitions among brain states within
fMRI datasets [22]. Persistent homology, as an advanced tool
of TDA, is being applied to analyze the topological features
of data, providing a powerful framework for studying the
evolution and persistence of structural patterns across various
scales [23]-[26]. The use of persistent homology to analyze
functional connectivity networks (FCNs) from resting state
fMRI data is on the rise [12]-[14], [27]. Persistent homol-
ogy can quantify structural changes in time-varying graphs,
providing both topological summaries and visualizations to
identify temporal patterns and anomalies [28]. Recently, we
demonstrated that FCN metrics are statistically similar across
varied sampling periods [8] only for TDA and not for tradi-
tional pipelines. This suggests persistent homology provides
a robust topological representation of FCNs invariant to ac-
quisition parameters, potentially removing noise in multi-site
studies and improving group comparison effect sizes. Multi-
site fMRI studies, despite their advantages in increasing sam-
ple size and generalizability [29], [30], introduce variability
across scanners and protocols that can undermine statistical
power and validity. Differences in acquisition parameters and
processing methods across sites can lead to non-biological
variability in functional connectivity metrics, posing chal-
lenges in large-scale fMRI research [31]. Furthermore, multi-
site designs can potentially impact the measurement of tem-
poral dynamics in fMRI studies.

The study of temporal variability in rs-fMRI data has
gained significant attention in recent years, as it provides
valuable insights into the dynamic nature of functional brain
networks and their relevance to human cognition [32]. Grow-
ing evidence suggests that functional brain networks exhibit
temporal variability, reflecting the dynamic interplay between
different cognitive states, arousal levels, and external stim-
uli [33]. One of the widely used techniques for characterizing
temporal variability in rs-fMRI data is the sliding-window
correlation analysis. This approach involves dividing the time
series into overlapping temporal windows and estimating
FCNs for each window [33], [34]. By tracking the changes
in functional connectivity patterns across these windows,
the dynamic nature of brain networks can be captured, and
their evolution over time can be investigated. However, this
method relies on predefined window lengths and may not
fully capture the inherent temporal dynamics of the data. To
address these challenges, existing techniques for analyzing
FCNs derived from rs-fMRI have largely relied on graph
theory to compute metrics like clustering coefficient and
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node degree [35], [36]. These measures summarize individual
weighted networks and enable comparisons between FCNs,
either at the level of nodes/links or using whole-network
summaries. However, graph-based methods have significant
limitations. First, common graph metrics depend heavily on
the parcellation scheme used to define network nodes [37].
Second, graph analysis requires binarizing network links
based on an arbitrary threshold, discarding valuable weight-
ing information [38]. While weighted graph analysis has been
proposed, such measures still vary with network density [39].
Multi-threshold analysis can mitigate this issue but remains
constrained by density effects [40].

Principal component analysis (PCA) is another a useful
technique for reducing the high dimensionality of rs-fMRI
datasets before applying clustering [41]. By transforming the
data into a lower dimensional space of uncorrelated prin-
cipal components, PCA enables more efficient and robust
clustering of large-scale rs-fMRI data [42]. Studies have
shown PCA preprocessing can remove noise and highlight
the most informative spatial and temporal features in rs-fMRI
for improved clustering performance [43], [44] compared
to direct clustering approaches [45]. Another approach to
characterizing temporal variability is through temporal in-
dependent component analysis (ICA) [46]. Temporal ICA
aims to identify temporally distinct functional modes or net-
works from the rs-fMRI data, revealing the underlying tem-
poral structure and dynamics of brain activity. The applica-
bility of temporal principal component analysis (PCA) as a
preprocessing step for sliding-window spatial independent
component analysis (SICA) of rs-fMRI data is evaluated by
analyzing the consistency of PCA-retained subspaces across
overlapping time windows [47]. While PCA-based dimen-
sionality reduction has proven useful for rs-fMRI cluster-
ing, it is limited to capturing linear relationships and may
miss critical topological features in complex functional con-
nectivity networks. Advanced network science techniques
are needed to overcome these limitations and characterize
topology more comprehensively in a manner invariant to
connectivity density or regional parcellation. For example,
topological data analysis (TDA) provides a powerful frame-
work for analyzing weighted networks across scales using
methods like persistent homology. TDA yields topological
summaries that are stable to network density variation. Fur-
ther, TDA can be applied in a resolution-invariant manner
using expansive parcellations. By moving beyond graph the-
ory, TDA-based network analysis can uncover robust and
informative topological signatures while avoiding common
density and parcellation dependencies. More recently, TDA
techniques, such as Mapper and persistent homology, have
been introduced as promising tools for studying the temporal
variability of rs-fMRI data. Mapper offers a low-dimensional
representation of the high-dimensional rs-fMRI data while
preserving its topological features [22]. This technique can be
particularly useful for visualizing and exploring the temporal
variability and overall structure of functional connectivity
patterns. Persistent homology, on the other hand, captures
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the evolution and persistence of topological features (e.g.,
connected components, loops, voids) across different scales
or time points, providing a quantitative measure of the sta-
bility and dynamics of functional brain networks [8]. Re-
cently, Chung et al. demonstrated the use of a TDA tech-
nique that estimates the state spaces of dynamically changing
functional brain networks during resting state by clustering
based on the Wasserstein distance metric [48] and proposed a
dynamic-TDA framework to distinguish topological patterns
of gender-specific brain networks [49]. Furthermore, TDA is
well-suited for characterizing changes in network topology
over time, providing new avenues for investigating temporal
dynamics in fMRI connectivity [50], [51].

Ill. TOPOLOGICAL DATA ANALYSIS BASED TEMPORAL

CLUSTERING PIPELINE
In this section, we present our end-to-end topological data

analysis-based clustering pipeline targeted for temporal rest-
ing state fMRI datasets that preserve the temporal dynamics
of the high dimensional brain networks. This pipeline masks
out non-neural variability in temporal fMRI datasets and
demonstrates similarity across temporal cohorts acquired at
different sampling frequencies. Our TDA pipeline integrally
relies on persistent homology, which, unlike traditional graph
analytic approaches, permits analyzing a range of thresholds
to gather connectivity information from FCNs.
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FIGURE 1: Topological data analysis based temporal clus-
tering pipeline for evaluating the robustness of persis-
tent homology applied to dynamic functional connectivity
(DFC) matrices calculated from rs-fMRI data acquired us-
ing three different sampling periods for the same subjects
(fiow = 2500ms(1eft), fneqim = 1400ms(center), and fyign =
645ms(right)).

Our processing pipeline aims to exploit the commonly
known fact that the resting-state brain typically oscillates
between a handful of discrete states [52], [53]. This implies
that it is potentially possible to group the temporal timesteps
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into a discrete number of states. This inherently is a data
clustering problem. Therefore, at the heart of our data pro-
cessing pipeline, we have data clustering across time, which
is applied to topological features extracted from the rs-fMRI
datasets. A schematic representation of our data processing
pipeline can be seen in figure 1. Here we can see the inputs
are the three temporal cohorts acquired from sampling 316
subjects at three temporal frequencies (fj,,, = 2500mS, finedium
= 1400ms, and fp;g; = 645ms).

A. MATHEMATICAL FOUNDATIONS AND APPLICATION OF
PERSISTENT HOMOLOGY TO RESTING-STATE FMRI

Persistent homology (PH) is an algebraic topology method
from Topological Data Analysis (TDA) domain used to study
qualitative features of data across multiple scales. It operates
on the principle of building simplicial complexes, which are
geometric constructs consisting of vertices, edges, triangles,
and their higher-dimensional counterparts. These complexes
evolve over a range of parameters, providing insights into the
topology of the underlying dataset.

Formally, for a given set of points (point cloud) X, persis-
tent homology tracks the birth and death of topological fea-
tures as a parameter € varies. At each threshold ¢, a Vietoris-
Rips complex R.(X) is constructed by connecting points
x;,x; € X if the distance between them d (x;, x;) is less than or
equal to e. As e grows, simplices (vertices, edges, triangles)
appear and merge, reflecting changes in topology. Persistent
homology captures these changes as persistent barcodes or
persistence diagrams, encoding the lifespan (birth to death
intervals) of topological features.

In the context of rs-fMRI, PH provides a robust methodol-
ogy to analyze FCNs, which represent interactions between
brain regions as correlation-based adjacency matrices. Direct
analysis of these networks can be challenging due to high
dimensionality and inherent noise. Persistent homology ad-
dresses these challenges by interpreting each brain region
as a vertex, forming Vietoris-Rips complexes based on dis-
tances derived from correlations. By varying the threshold e,
persistent homology captures and quantifies the emergence
and merging of connected components, offering robust sum-
maries of complex temporal dynamics.

Our pipeline specifically employs O-dimensional persistent
homology to characterize the evolution of connected compo-
nents within dynamic FCNs. This approach facilitates robust
and interpretable topological signatures suitable for temporal
clustering analyses across diverse data acquisition parameters
and sampling frequencies.

Our end-to-end TDA pipeline has the following steps:

1) Generate FCNs from rs-fMRI data: We applied
dynamic-windowed Pearson correlation on the fMRI
dataset (as used by us before in Jia et al [4]) to generate
the dFCNs from data acquired with different acquisi-
tion parameters (fyin = 645ms, finedium = 1400ms, and
Jfiow = 2500ms.) as a data pre-processing step (Sec-
tion III-B). This provides an FCN at each time point.
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FIGURE 2: The FCN and extracted topological feature as 0-
dimensional barcodes for subject 32 at different time points
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2) Create distance matrix from FCNs: The extracted
FCNs at each time point are then converted into dis-
tance matrices as a weighted graph (Section III-C).

3) Extract persistent barcodes from distance matrix: In
this step, we extract persistent diagrams (0-dimensional
barcodes) from the distance matrices using persistent
homology to identify the topological features from the
matrices (Section III-D).

4) Temporal clustering on PD to prove the resiliency
of different data acquisition parameters: Finally, we
apply temporal clustering on the extracted barcodes
to see the similarity between the topological features
extracted using different data acquisition parameters
(Section III-E).

B. FCN GENERATION FROM RS-FMRI DATA

We sourced the structural T1-weighted and rs-fMRI data
from the freely accessible Enhanced Nathan Kline Institute
Rockland Sample database (NKI-RS) [54]. The MRI data was
collected using a 3T Siemens Magnetom Tim Trio scanner.
The acquisition parameters for the T1-weighted structural
data included: isotropic voxels of 1.0 mm with 176 slices, a
repetition time (TR) of 1900 ms, an echo time (TE) of 2.52
ms, and a field of view (FOV) of 250%x250. Resting state
fMRI data was gathered using multiband echo-planar imaging
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(EPI) [55] from each participant using three distinct acqui-
sition protocols with varying parameters. The first protocol
used 3.0 mm isotropic voxels with 40 slices, a TR of 645 ms,
a TE of 30 ms, a FOV of 222x222 mm, 900 volumes, and
a multi-band factor of 4. The second protocol used 2.0 mm
isotropic voxels with 64 slices, a TR of 1400 ms, a TE of
30 ms, a FOV of 224x224 mm, 404 volumes, and a multi-
band factor of 4. The third protocol used 2.0 mm isotropic
voxels with 38 slices, a TR of 2500 ms, a TE of 30 ms, a
FOV of 216 x216 mm, 120 volumes, and a multi-band factor
of 1. Even though the three datasets from each participant are
identified with the corresponding TR, they differ in several
other scan parameters, such as the number of volumes, multi-
band factor, FOV, and voxel size. The MRI data underwent a
standard pre-processing pipeline, which included the removal
of the first five volumes, slice time correction, and motion
correction. T1-weighted anatomical images were aligned to
the mean functional images, which were then spatially reg-
istered to a standard MNI152 template. Nuisance variables
such as low-frequency drifts, and motion parameters were
regressed out. Unwanted physiological fluctuations (signals
from white matter and cerebrospinal fluid) were eliminated
using aCOMPCor (anatomical component-based noise cor-
rection). After excluding subjects that did not pass quality
control, we identified 316 subjects with usable data from
all three acquisition protocols. We then obtained mean time
series from 113 brain regions (using the Yeo parcellation
template [56]) for each subject and acquisition protocol.
Using Pearson’s correlation, we estimated FCN matrices from
these mean time series

At this stage, we generate one FCN for each timepoint
using dynamic-windowed Pearson’s correlation as in our pre-
vious work [4]. Briefly, this method uses sliding temporal
windows to calculate Pearson’s correlation to be assigned
to each time point. The width of the temporal window is
dynamically determined by the stationarity of the statistical
properties of the time series within the window, determined
by the Augmented Dickey-Fuller test. Each FCN is stored as
a symmetric adjacency matrix M with size 113 x 113, where
M;; represents the correlation coefficient between brain nodes
i and j. The dataset consists of three temporal frequencies
(Frigh = 645mS, frnedium = 1400ms, and fi,,, = 2500ms). There
are 316 subjects for each temporal frequency. High temporal
frequency (fhi;n = 645ms) yields a total of 754 time-steps;
medium temporal frequency (fnegiuvm = 1400ms) scan yields
336 time-steps; and on the other end of the spectrum is low-
frequency scans of fi,, = 2500ms yields 86 time-steps. The
total number of adjacency matrices is 371,616 (316 x 754) +
(316 x 336) + (316 x 86) with a dimension of 113 x 113. Fig-
ure 2 (left column) shows an example of the extracted FCNs
for subject 32, for the three sampling periods at different time
points.

C. CREATION OF MATRICES FROM FCNS
Usually, topological data analysis uses point cloud data in
metric configuration. We confine the weighted networks from
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fMRI data in distance matrices in our TDA pipeline before ap-
plying TDA techniques. Then, we extract persistent barcodes
from the distance matrices.

We use popular Pearson’s correlation coefficients
pce(py, g;) to measure the linear correlation between any two
data points (nodes) p, and g, at time ¢ in the fMRI data [57].
However, correlation coefficients do not directly represent
distances, which are often required for clustering algorithms
or other analyses. Therefore, we transform the correlation co-
efficients into a distance metric using the following formula:

d(ps, q¢) = /1 — pee(pr, qi)?

This transformation ensures that higher positive correlations
(closer to 1) are mapped to smaller distances (closer to 0),
while lower correlations (closer to 0) or negative correlations
are mapped to larger distances. The temporal indexing ¢ indi-
cates this is a temporally dynamic dataset, and the correlations
and distances are calculated between node pairs at each time
point.

D. EXTRACTION OF PERSISTENT BARCODES FROM
DISTANCE MATRICES

Unlike traditional graph analytic approaches, persistent ho-
mology permits analyzing a range of thresholds to gather con-
nectivity information from a given FCN. Figure 3 shows an
example of using persistent homology to record the changes
of topological features over the changes of distances using
zero-dimensional barcodes. Vietoris-Rips filtration on the
given 5x5 FCN is applied to capture the changes in the
number of connected components for different parameters of
d. Using persistent homology, we capture topological features
from the distance matrices extracted from the fMRI FCNs.
This section overviews topological feature extraction using
persistent barcodes and the distance metric we have used. The
existing literature contains the details on these topics [25],
[58].

1) Extraction of topological features using persistent
homology

Persistent homology can extract topological features from a
topological space. The homology of the space can be divided
into groups based on the dimensions of the features. A topo-
logical space X can be divided into homology groups H;(X)
fori = 0,1,2,... where H;(X) represents the i’ homology
group. Each homology group H, (X) denotes the number of
n-dimensional holes in the topological space X. For example,
the Hy(X) homology group shows the number of connected
components, H;(X) homology group shows the number of
holes, Ho(X) homology group shows the number of voids in
the topological space X.

In this paper, we use Hy(X) homology group (0-
dimensional) to extract the number of connected components
from the rs-fMRI FCNs (at each time point) as topological
features. Figure 3 shows a simple example of using persistent
homology to extract the topological features from a given
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FCN. The table at the bottom right in Figure 3(b) represents
the adjacency matrix of an FCN with five nodes. Persistent
homology captures the changes in topological features over
distance thresholds (¢) between the nodes. In a point cloud,
F with p nodes, two nodes (x, y) are marked as connected
with an edge if the distance d(x,y) is less than threshold e.
In this scenario, they form a 1-Simplex. When three nodes
are connected with each other for some value of ¢, they form
2-Simplex and so on. For a given ¢, the graph is called a
Rips complex represented by Rips(F,€). These continuous
changes in the value of e result in the changes in topological
features. Vietoris-Rips filtration captures the increasing value
of € for which a new Rips-complex, in other words, a new
topological feature, is being generated [59]. Figure 3(a) shows
the extraction of different topological features in various
thresholds of € using Vietoris-Rips filtration.

In this example, for each real number ¢ where topological
features are changed, we consider them important events and
store these values of ¢. Here, ¢ represents the filtration value
used in the persistent homology analysis, which is derived
from the adjacency matrix (bottom right table of Figure 3)
representing the FCN. As the filtration value ¢ increases, topo-
logical features (such as connected components) can appear,
merge, or disappear in the simplicial complex constructed
from the data. For instance, at some time 7y, a topological
feature, a component is being created, and at time #, it is
merged with another component. We keep track of the birth
as tfyiyp, = to and death as tg.; = t; for each component.
The time of the (i, taean) Of the topological features is
visualized as barcodes. The span of time for each feature
tieath — tpirn 18 called the persistence of that feature. Figure
3(b)(left) shows the barcodes for the given FCN. At ¢t = 0,
five topological features are born as five independent (con-
nected) components. At¢ = 3.6, two components are merged;
thus, the death of a component is recorded at ¢+ = 3.6.
Therefore, the persistence of that component is 3.6. Similarly,
at t = 6.32, another component is merged with a persistence
of 6.32. For O-dimensional persistence barcodes, this process
continues until there is only one connected component. This
last component never dies; thus, the persistence of this com-
ponent is co. The 0-dimensional persistence barcodes in Fig-
ure 3(b)(left) represent the birth and death of the topological
features, which is the changes in the number of connected
components of the FCN. Each horizontal bar begins at the
birth of a component and ends at the death of each component
in the barcodes representation. While higher-order features
such as 1-dimensional homology (loops) can in principle be
extracted, we restrict our analysis to Hy for two reasons:
(i) computational tractability on large, time-varying FCNs,
and (ii) prior evidence that connected components provide
stable and interpretable topological features for functional
brain networks.
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7.07 3.60 18.78 0.00 15.13
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(b) 0-dimensional persistent barcodes (left) and adjacency matrix of the FCN (right)

FIGURE 3: An example of persistent homology to extract topological features using 0-dimensional barcodes. The adjacency

matrix is of size 5 x 5.

2) Formation of persistent diagrams as signatures for the
FCNs

The 0-dimensional barcodes extracted from the functional
connectivity networks (FCNis) represent the evolution of con-
nected components over distance thresholds. In our pipeline,
we generate 0-dimensional persistent barcodes for each FCN.
Each FCN has 113 vertices that form the finite set of points
F where the value d; represents the pairwise distance be-
tween the points. We extract 0-dimensional barcodes using
persistent homology for all the 371,616 FCNs ((316 x 86) +
(316 x 336) + (316 x 754)). Figure 2 displays illustrations
of the extracted barcodes at various time points across three
different temporal sampling periods(fhign = 645ms, fuedium =
1400ms, and fj,,, = 2500ms) for a single subject (subject 32).
After this stage, we get timestep# x 113 x 2 as 0-dimensional
barcodes for each of the sampling periods.

A persistent barcode can be represented with a persistent
diagram without information loss where the birth and death
of a component (a topological feature) are represented as a
point on the X-axis and Y-axis, respectively. These points on a
two-dimensional surface as a persistent diagram can be used
for statistical inference to prove that persistent homology is
resilient to different data acquisition parameters. By forming
the persistent diagrams from the 0-dimensional barcodes of
each FCN, we obtain topological signatures that quantify the
evolution of connected components over distance thresholds
in the functional brain networks. The distance between points
in the persistent diagram provides a stability measure, al-
lowing us to compare topological signatures across subjects.
Thus, these signatures are used as features for statistical
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analysis in our experiments.

E. TEMPORAL CLUSTERING ANALYSIS

The literature shows the usability of earth moving distance,
also known as Wasserstein distance (WD), for statistical infer-
ence of persistent diagrams [15], [16]. We use WD as a metric
to compute the distance between two persistence diagrams
extracted from two FCNs. WD represents the minimum value
that is computed in the match calculation between the points
of two persistent diagrams. The WD value of two similar
persistent diagrams is smaller than two dissimilar persistent
diagrams. This WD metric assists in proving the hypothesis
of similarity between the persistent diagrams extracted from
different data acquisition parameters, such as sampling rates.

The temporal clustering analysis is to evaluate our hy-
pothesis of the similarity of the fMRI FCNs obtained from
different data acquisition parameters, such as different tem-
poral sampling rates (TR). Our dataset includes three data
cohorts: fyign = 645ms, fnedium = 1400ms, and fi,,, = 2500ms.
High temporal frequency (f,i;;, = 645ms) has a total of 754
time-steps; medium temporal frequency (fiueqim = 1400ms)
scan yields 336 time-steps; and low temporal frequency fio,
= 2500ms yields 86 time-steps for each of the subjects. Fig-
ure 1 represents the TDA pipeline we develop for the TDA
framework. We calculate pairwise WD between the persistent
diagrams of the timesteps for all subjects within the same data
cohort.
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Let,

S; = Subject i, where i € {1,2,...,316}
T, = Number of time steps for data cohort ,
where k € {754, 336, 86}
Ps, ; = Persistence diagram for subject S; at time 7,
wheret € {1,2,...,T;}
dw (Ps, 1, Ps;;) = Wasserstein distance between Pg, ; and Ps; ;

The TDA distance matrix for a given subject S; in cohort k
is defined as:

D(Si)flJz = dW(PS[Jl’PSMtQ)

1
forr; € {1,2,..., T} x 12 € {1,2,... M

7Tk}

In Eq. 1, we compute the pairwise Wasserstein distance
between persistence diagrams at times #; and 7o, which gives a
Ty x Ty, distance matrix for each subject S;. We have three data
cohorts (fuign = 645ms, fipedium = 1400ms, and fio,, = 2500ms)
with different timesteps (754, 336, 86). Thus, we get 316
adjacency matrices for each data cohort with size (754 x 754),
(336 x 336), and (86 x 86), respectively.

These high-dimensional adjacency matrices are complex
and cannot be analyzed by statistical methods. To make it in-
terpretable by the statistical methods and for better visualiza-
tion, we apply the multidimensional scaling (MDS) technique
to reduce the dimensionality of the matrices. After this stage,
we get 316 adjacency matrices for each data cohort with sizes
(754 x 2), (336 x 2), and (86 x 2). The two-dimensional MDS
results are plotted using scatter plots that give an intuition to
use clustering to calculate the similarity between the TRs. We
apply the k-means clustering technique to the MDS results
to get the number of clusters for the reduced-sized matrices.
As k-means clustering requires configuring the number of
clusters n before the cluster computation, we choose n us-
ing a well-known approach called Silhouette analysis. Using
Silhouette analysis, we choose n that gives the maximum
Silhouette score for the given adjacency matrices between the
range from 2 to 16 [60], [61]. After calculating the number
of clusters for all three data cohorts, we get the number of
clusters for all 316 subjects across these data cohorts. A
similar number of clusters for the same subject across three
data cohorts will indicate the similarity between the subjects
for different data acquisition parameters (different TRs in our
case). If we get significant similarity between the TRs, we can
conclude the resiliency of persistent homology for dynamic
functional connectivity derived from rs-fMRI with different
data acquisition parameters.

We use Matlab during the data preprocessing steps and
Python for statistical analysis. For the topological data anal-
ysis framework, we use Gudhi library [62], [63] to compute
the O-dimensional barcodes from FCNs and to calculate WD
distances between the persistent diagrams. We also use scikit-
learn library for multidimensional scaling and cluster calcu-
lation [60].
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IV. NONTDA-BASED DATA PROCESSING PIPELINES FOR
RS-FMRI DATASET

To assess the effectiveness of our TDA pipeline presented
in Section III, we implement three alternative nonTDA-
based data processing pipelines for comparative analysis.
Section IV-A provides a detailed walkthrough of a direct time-
series clustering pipeline. In Section IV-B, we show a pipeline
that employs Principal Component Analysis (PCA) for di-
mensionality reduction and clustering. Section I'V-C outlines
a traditional functional connectivity network (FCN) analysis
pipeline tailored for brain network datasets. As the datasets
are in mat format, for data preprocessing, we utilize Matlab to
process the raw fMRI time series, handle missing values, and
construct functional connectivity networks. Python is used for
all subsequent analyses, including dimensionality reduction,
clustering, and statistical testing. We use scikit-learn library
for principal component analysis, multidimensional scaling,
and k-means clustering [60].

A. DIRECT TIME-SERIES CLUSTERING PIPELINE

DFC 2500 DFC 1400 | DFC 645 |
(86x113x113 (336 x113x 113
\ | ResLape \
\ Clustering \

\ Statistical Analysis |

) i
( Pairwise I(

Across cohorts )

FIGURE 4: Direct time-series clustering pipeline that by-
passes dimensionality reduction of the high dimensional tem-
poral datasets.

Our first baseline pipeline is the nonTDA-based direct
clustering pipeline. It implements a direct clustering approach
on the temporal rs-fMRI datasets without any dimensionality
reduction or graph construction steps. As shown in Figure 4
the input of this pipeline is the timestep# x 113 x 113 x where
113 x 113 corresponds to the spatial resolution of each of the
individual FCN capturing the pairwise connectivity strengths
among the 113 spatial regions of the brain. The timestep# is
respectively 86, 336, and 754 for the three temporal frequen-
Cies fiow, fnedium» and, frign TESpECtively.

Directly clustering multivariate FCNs poses challenges due
to the high dimensionality of the data. To mitigate this, we
flatten the 113 x 113 matrices into one-dimensional arrays
of length 12,769, resulting in timestep# x 12,769 sized
matrices for each of the subjects for each data cohort prior to
clustering. This reshaping transforms the data into a format
amenable to traditional clustering algorithms. Similar to the
TDA pipeline, we then apply the k-means clustering tech-
nique to reshaped matrices. We utilize the silhouette analysis
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method to determine the optimal number of clusters, denoted
as n, within the range of 2 to 16, ensuring the selection of the
cluster configuration with the highest silhouette score.

After calculating the number of clusters for all three data
cohorts, we get the number of clusters for all 316 subjects
across these data cohorts. The subsequent step defines the
statistical analysis phase, where we perform pairwise and
cohort-wide set overlaps of the number of clusters. Similar
to the TDA pipeline, the key hypothesis is that robust cluster-
ing solutions should exhibit consistency across subjects and
sampling rates. To evaluate this, we statistically compare the
identified cluster numbers across cohorts using pairwise and
group-wise similarity scores. Higher overlaps in the optimal
cluster numbers between the three temporal sampling periods
and higher pairwise set overlaps will indicate higher simi-
larity scores, thereby affirming the robustness of the direct
clustering approach to variability in sampling rates.

B. PCA-BASED DIMENSIONALITY REDUCTION AND
CLUSTERING PIPELINE

DFC 2500
(86x113x113

DFC 1400
(336 x113x113(
[

DFC 645

(754 x113x 113(
[

Reshape \

86 x 12769

ot

Clustering \

v
Statistical Analysis |

ik

\ Pairwise )

FIGURE 5: PCA-based dimensionality reduction and clus-
tering pipeline where the high dimensional data is reduced to
2 principal components capturing the most variance before
applying clustering algorithm.

Across cohorts J

After establishing the baseline with the direct clustering ap-
proach, we introduce a principal component analysis (PCA)-
based dimensionality reduction and clustering pipeline to
address the high dimensionality challenges in the temporal
FCN datasets. Figure 5 displays PCA-based dimensionality
reduction and clustering pipeline. This pipeline incorporates
a three-step process involving PCA for dimensionality reduc-
tion, k-means clustering, followed by statistical analysis.

Like the prior pipelines, this pipelines takes as input matri-
ces of size timestep# x 113 x 113. where the timestep# values
are 86, 336, and 754 for the temporal frequencies fi,, fimediums
and fjn, respectively. We flatten the 113 x 113 functional
connectivity matrices into one-dimensional arrays of length
12,769 to reorganize our data into a 2D matrix suitable for
PCA, where each row represents a timestep and each column
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represents an element of the flattened connectivity matrix.
After flattening, the input to PCA would indeed be a 2D
matrix with dimensions: for fj,,: 86 x 12,769, for fedium:
336 x 12,769, and for fuien: 754 x 12,769. This reshap-
ing transforms the higher-dimensional tensor data into a 2D
matrix format required by PCA to identify the top principal
components capturing the most variance in the connectivity
patterns across time. Applying PCA on the flattened 12, 769
dimensional data then allows us to reduce the high dimension-
ality down to the most informative 2 principal components
before clustering. In this stage, we apply PCA to reduce the
dimensionality of the flattened timestep# x 12, 769 matrices.
Specifically, we use PCA to project the data onto a lower-
dimensional subspace while retaining as much variance as
possible. For each temporal frequency (fiow, fimedium  fhigh)» W€
reduce the dimensions from 86 x 12769 to 86 x 2 for f,,,
336 x 12769 to 336 X 2 for fedium, and 754 x 12769 to 754 x 2
for fpign. The resulting PCA-transformed matrices, now of size
timestep## X 2, capture the most salient features of the origi-
nal data. This dimensionality reduction facilitates subsequent
clustering by focusing on the most informative components
while significantly reducing computational complexity.

Following the PCA-based dimensionality reduction, we ap-
ply k-means clustering to identify patterns and group subjects
based on the reduced feature space. Similar to the direct clus-
tering approach, we leverage silhouette analysis to determine
the optimal number of clusters (n) within the range of 2 to
16 for each temporal frequency that maximizes clustering
quality. The resulting cluster assignments provide a compact
representation of the original data while capturing meaningful
variations across subjects and temporal sampling rates.

To assess the performance of the PCA-based pipeline, we
follow a similar statistical analysis phase as in the direct
clustering approach. The number of clusters obtained for all
subjects across the three temporal frequencies undergoes pair-
wise and cohort-wide set overlap analysis. This comparison
helps evaluate the consistency of clustering solutions across
different temporal sampling periods. The hypothesis remains
that a robust clustering solution should exhibit coherence in
identified clusters across subjects and temporal frequencies.
We use pairwise and group-wise similarity scores to statisti-
cally compare the optimal cluster numbers. Higher overlaps
in cluster assignments between temporal sampling periods
and increased pairwise set overlaps indicate greater stability
and reliability in the face of variability in sampling rates.

C. TRADITIONAL DFCN CLUSTERING PIPELINE WITH
MDS-BASED DIMENSIONALITY REDUCTION

We develop a traditional dynamic FCN (dFCN) analysis
pipeline with similar steps to the aforementioned TDA-based
pipeline for the rs-fMRI dataset. The traditional dFCN anal-
ysis pipeline is illustrated in Figure 6. Analysis steps include
extracting subject-specific DFC (dynamic functional connec-
tivity) matrices, calculating graph metrics, dimensionality
reduction via MDS, clustering with k-means, and computing
cluster overlaps. Instead of the persistent diagrams or apply-
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FIGURE 6: Traditional dynamic functional connectivity net-
work (dFCN) clustering pipeline. This non-TDA pipeline has
a similar statistical analysis structure to the TDA pipeline, al-
lowing comparison of approaches for assessing the robustness
of persistent homology on temporal rs-fMRI data.

ing any persistent homology methods, we use a correlation
coefficient between the timesteps for all three data cohorts.
Let,

S; = Subject i, where i € {1,2,...,316}
T; = Number of time steps for data cohort k,
where k € {fhign = 754, finedium = 336, fiow = 86}
Ag, , = Adjacency matrix for subject S; at time ¢,
where t € {1,2,...,T}}

The distance matrix for a given subject S; in cohort k is
defined as:

M N
D(Si)fl,t2 = Z Z ‘a%n - afﬁn|2 2)

m=1n=1

In Eq. 2, M, N are the dimensions of the adjacency matri-
ces. We compute the Euclidean distance [64] between adja-
cency matrices at times #; and 5, which gives 316 distance
matrices of sizes (86 x 86), (336 x 336), and (754 x 754)
for the three cohorts respectively. In this stage, we acquire
316 matrices for each of the data cohorts with the size of
(86 x 86) for fi,,, = 2500ms, (336 x 336) for fegiwm = 1400ms,
and (754 x 754) for fyien = 645ms. Then, we follow a simi-
lar pipeline of the TDA framework to keep the comparison
uniform. We reduce the dimension of the matrices using two-
component multidimensional scaling (MDS) and then calcu-
late the number of clusters (n) on the reduced matrices using
k-means clustering. We also use the maximum Silhouette
score to choose the value of n within the range from 2 to 16.
Finally, this pipeline will also produce the number of clusters
of the MDS for every 316 subjects for all three data cohorts.
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Our hypothesis will be proven right if the TDA pipeline gives
a better similarity score than the non-TDA pipelines.

V. RESULTS

All of the TDA-based and nonTDA-based pipelines start with
embedding one FCN for each rs-fMRI scan as an adjacency
matrix (section III-B). In this stage, we get 371, 616 adjacency
matrices ((316 x 86) + (316 x 336) + (316 x 754)) for three
temporal sampling periods (fign = 645ms, finedium = 1400ms,
and fj,,, = 2500ms). Each matrix has a dimension of 113 x113.
In the second stage of the pipelines, we embed the FCN
using Pearson’s correlation coefficients and range the values
between 0 and 1. In the TDA-based pipeline, the third stage
extracts O-dimensional persistent barcodes from the matrices
using persistent homology (Section III-D). In the nonTDA-
based pipelines, instead of using persistent homology, we use
correlation coefficients between the timesteps for the three
temporal sampling periods (TRs) for traditional FCN analy-
sis(Section IV-C). Both the direct clustering and PCA-based
dimensionality and clustering pipeline reshape the input ma-
trices from timestep# x 113 x 113 to timestep# x 12,769
where the later one applies PCA based dimensionality reduc-
tion before applying clustering. For all of the TDA-based and
nonTDA-based pipelines, we continue to the statistical anal-
ysis phase, where we compute the cohort-wide and pairwise
cluster intersections of the subjects for all data cohorts.

In the TDA-based pipeline, we use the Wasserstein distance
metric on the persistent diagrams for all the subjects for
all three temporal sampling periods. On the contrary, in the
nonTDA-based traditional FCN analysis pipeline, we directly
use the correlation coefficient on the extracted FCNs. Adja-
cency matrices generated after this stage in these pipelines are
similar in size for respective temporal sampling periods. For
temporal sampling period fi,, = 2500ms with 86 timesteps
in the TDA-based pipeline, each subject yields adjacency
matrix WD of size (86 x 86) where WD;; represents the
pairwise Wasserstein distance between timestep i and j. In
the traditional FCN analysis pipeline for the same data cohort,
each subject yields adjacency matrix A of size (86 x 86) where
Aj; represents the pairwise norm between timestep i and j.
Similarly, fiedium = 1400ms and fii;r, = 645ms yield adja-
cency matrix of size (336 x 336) and (754 x 754), respectively,
for each of the subjects during TDA and traditional FCN
analysis. This high dimensionality of the matrix size makes
it challenging to apply statistical analysis. For this reason, we
applied multidimensional scaling (MDS) and reduced the size
of the matrices to fit into a two-dimensional surface for all the
data cohorts(fjy,: (86 X 2), finedium: (336 X 2), fnign: (754 X 2)).
Then, we applied clustering on the MDS data using the k-
means clustering algorithm with Silhouette analysis to select
the number of clusters. Finally, we get the number of clusters
for all 316 subjects for both of these pipelines.

For the other two nonTDA-based data processing pipelines,
we first reshape the input matrices. In the direct time-series
clustering pipeline, we flatten the 113 x 113 matrices into
12, 769-dimensional vectors and calculate the optimal num-
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FIGURE 7: Clustering result for subject 8 across different temporal periods: fi,, = 2500ms (left), fieqium = 1400ms (center),
Jhigh = 645ms (right) using TDA-based temporal clustering pipeline (top row). Comparative results for the same subject
employing nonTDA-based pipelines, including PCA-based dimensionality reduction and clustering (middle row), and the

traditional dFCN clustering pipeline (bottom row).

ber of clusters for each data cohort directly on this reshaped
high-dimensional data. In contrast, for the PCA-based di-
mensionality reduction and clustering pipeline, we flatten the
FCNs and then apply 2-component PCA to reduce the dimen-
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sionality down to 2 principal components before clustering.
This PCA step mitigates the challenge of directly clustering
high-dimensional data. After PCA reduction to 2D, we de-
termine the optimal cluster numbers for each subject on the
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low-dimensional PCA-reduced data. Both pipelines reshape
the data as a preprocessing step, but the PCA pipeline has an
additional dimensionality reduction phase prior to clustering.

Figure 7 shows the clustering result for a single sub-
ject (subject 8) for all three data cohorts (fi,,, = 2500ms,
Jmedium = 1400ms, fhon = 645ms). The top row of the
figure represents the plotted clusters using the TDA-based
pipeline, and we see that each data cohort here has two
clusters. The second row shows the clustering result for same
subject using the PCA-based dimensionality reduction and
clustering pipeline. While the number of clusters remains
consistent for fj,,, and f,,.qium in this pipeline, there is a notable
discrepancy in the number of clusters for fj;.;. This suggests
that the pipeline can not effectively preserve robustness across
different data cohorts. The bottom row of the figure shows
the plotted clusters for the same subject using the nonTDA-
based traditional FCN analysis pipeline, and the number of
clusters varies for the data cohorts. As the number of clusters
remains unchanged for different temporal sampling periods
with similar shape using the TDA-based pipeline and varies
largely for the nonTDA-based pipelines, it shows the invariant
of the TDA pipeline. We cannot plot the clustering result for
direct clustering pipeline due to the elevated size of the data in
this clustering analysis (#timestep x12,769), and the absence
of any dimensionality reduction techniques (MDS or PCA)
applied on the original data. Thus, this illustration gives an
intuition towards our hypothesis of the resiliency of persis-
tent homology-based methods to different data acquisition
parameters (temporal sampling periods) in brain rs-fMRI data
analysis.

To statistically compare the consistency of identified clus-
ter patterns across subjects for both the TDA-based and
nonTDA-based pipelines, we compute two similarity metrics
- the cohort-wide and pairwise cluster distances. For the
cohort-wide analysis, we calculate the absolute difference in
number of clusters between each subject’s optimal solution.
This provides a distribution of cluster number distances in-
dicating the spread/variability across subjects. For pairwise
analysis, we compute cluster distances between each pair of
data cohorts for the same subject. The pairwise distances are
aggregated to produce a distribution showing the overall pair-
wise consistency. Lower cohort-wide and pairwise distances
indicate higher similarity and consistency in optimal cluster
numbers. This quantifies the robustness of each method to
individual variations and its ability to extract connectivity pat-
terns that are generalizable across populations. The metrics
provide crucial insights into the stability and reproducibility
of the clustering solutions.

A. COHORT-WIDE CLUSTER DISTANCE COMPARISON

We capture the number of clusters for all 316 subjects for
all three data cohorts for all the pipelines. We calculate the
distance between the number of clusters for each subject
using:
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distance(subject;) = abs(subject;y,,. — subjecti ,oon:)
+ abs(subject;, ... — subjecti,,., )
+ abs(subject,»fmm - subject,'%mm) (3)
where subject;,. .., Subjecti, ,oo..., Subjecti,,. ~ are the
number of clusters for subject; for the data cohorts f,, =

2500ms , finedium = 1400ms, friqn = 645ms respectively and
abs denotes the absolute difference.

—e— TDA

35 nonTDA (direct clustering)

—e— nonTDA (PCA and clustering)
—e— nonTDA (traditional FCN analysis)
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FIGURE 8: Cohort-wide cluster distance comparison be-
tween TDA-based statistical data processing pipeline and
nonTDA-based pipelines for all temporal sampling periods
Jiow = 2500ms, fipedium = 1400ms and fion = 645ms. In the
TDA-based pipeline, more than 59% of the total subjects
exhibit a cluster difference less or equal to 1, indicating the
highly robust cluster patterns consistent across cohorts.

The cohort-wide cluster distance analysis in Figure 8
reveals striking differences between the TDA-based and
nonTDA-based pipelines. For the TDA pipeline, the majority
of subjects (59%) exhibit a tight cluster number distance of
less than or equal to one across cohorts. This indicates TDA
identifies highly robust cluster patterns consistent across indi-
viduals. In contrast, for the direct clustering pipeline, only 6%
of subjects have a cohort-wide distance less than or equal to
one. For the PCA-based pipeline, this number rises to 19% of
subjects and for the traditional FCN analysis plummets to 2%
of subjects. The significantly lower consistency highlights the
inability of these nonTDA-based techniques to extract stable
brain states generalizable across the population. Unlike the
topological approach, these methods are heavily influenced
by individual variations. Overall, the cohort-wide analysis
affirms the resilience of TDA for rs-fMRI analysis, which is
able to mitigate differences in data acquisition parameters.

B. PAIRWISE CLUSTER DISTANCE COMPARISON

Additionally, we perform a pairwise comparison of the num-
ber of clusters for the data cohorts for all of the pipelines.
The value of abs(subject;,.,,. — Subject;, ,.,..) T€presents the
pairwise distance on the number of clusters for subject; for
the data cohorts fi,,, = 2500ms and feqiwn = 1400ms.
Similarly, the value of abs(subject;, ... — Subjecti,,.,.) and
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FIGURE 9: Pairwise cluster distance comparison between
TDA-based data processing pipeline and nonTDA-based
pipelines. Comparison between temporal sampling f,,cqim =
1400ms and f,, = 2500ms (top row), temporal sampling
Jhigh = 645ms and fiegium = 1400ms(middle row), temporal
sampling fyign = 645ms and fj,,, = 2500ms(bottom row).

abs(subjecty,,,, — subjectiy,,,.) represent the pairwise dis-
tance on the number of clusters between the data cohorts
(fmedium = 1400ms9fhigh = 645ms) and (fhigh = 645mssflow =
2500ms ) respectively. This pairwise comparison will help to
identify whether there is a closer similarity between the data
cohorts in the TDA-based pipeline over the nonTDA-based
pipelines. Figure 9 shows the pairwise distance between the
data cohorts in the TDA-based pipeline and in the nonTDA-
based pipelines. In the TDA pipeline, the pairwise distance
between data cohorts fuediwm and frign, show the highest simi-
larity (78% matching within distance 2). The data cohort pair
fuign and fi,,, has a similarity of 77% within distance two, and
data cohort pair f,,, and fyeqiu, has a similarity of 74% within
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the same distance. This high similarity between the data
cohort pairs proves the efficacy of persistent homology-based
techniques on the rs-fMRI data analysis with different tempo-
ral sampling periods. In the nonTDA-based direct clustering
pipeline, we see the maximum similarity between the data
cohorts fiedium and fiqon with 75% similarity within distance
2. The other data cohort pairs ((fiow » finedium) and (fhigh, fiow))
has 23% and 21% similarity within the same distance. In the
PCA-based dimensionality reduction and clustering pipeline,
we see the maximum similarity between the data cohorts
Sonedium and fio,, with 60% similarity within distance 2. The
other data cohort pairs ((fyedium > frigh) and (frign, fiow)) has
50% and 55% similarity within the same distance. In the last
nonTDA-based traditional FCN analysis pipeline, we see the
maximum similarity between the data cohorts f,eqiwm and fhign
with 40% similarity within distance 2. The other data cohort
pairs ((fiow » finedium) a0d (Fhighs fiow)) has 23% and 22% simi-
larity within the same distance. This low similarity between
the data cohorts using nonTDA-based pipelines indicates the
inefficiency of the nonTDA-based method for analysing rs-
fMRI data with different data acquisition parameters.

C. EVALUATION USING A CLINICAL ADHD DATASET

To validate the robustness of our TDA-based temporal
clustering pipeline, we conducted a comparative evaluation
against the traditional dynamic functional connectivity net-
work (dFCN) pipeline using the publicly available ADHD-
200 dataset [65], [66]. We constructed two cohorts based on
the temporal resolution (TR) of the rs-fMRI scans: TR=2s and
TR=2.5s. Each cohort comprises ADHD and control subjects.
The TR=2s cohort includes 290 control and 285 ADHD sub-
jects, while the TR=2.5s cohort consists of 189 control and 68
ADHD subjects. Figure 10 presents a systematic comparison
of clustering consistency between the TDA-based pipeline
(left column) and traditional dFCN pipeline (right column)
across ADHD and control groups. Each subplot shows the
distribution of the number of clusters across all subjects
within a group and TR condition. The x-axis denotes the
number of clusters (ranging from 1 to 16), and the y-axis
indicates the percentage of subjects exhibiting each cluster
count.

In the TDA-based pipeline (left column), we observe a
strong peak at 2 clusters for both ADHD and control subjects
across TR=2s and TR=2.5s. This suggests a high degree of
consistency in the extracted brain state patterns, with over
80% of subjects in each subgroup consistently showing two
clusters. This invariance across different TRs demonstrates
the robustness of persistent homology and topological fea-
tures in summarizing the intrinsic structure of time-varying
brain connectivity.

In contrast, the traditional dFCN pipeline (right column)
exhibits significant variability in the number of clusters across
TRs. For both ADHD and control groups, the cluster distri-
butions are dispersed, with subjects assigned to a wide range
of cluster numbers, especially at higher TRs. For instance, in
the ADHD group (top right), the cluster counts span from 3
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FIGURE 10: Comparison of the number of clusters obtained using TDA-based pipeline (left column) vs traditional dFCN
pipeline (right column) for ADHD (top row) and Control (bottom row) groups across TR=2s and TR=2.5s. The TDA pipeline
shows high consistency reflected by higher similarity (> 80%) in the number of identified clusters. The nonTDA-based
traditional dFCN pipeline exhibits variability and sensitivity to TR differences.

to 15, with no dominant mode. This inconsistency indicates
the sensitivity of the dFCN pipeline to changes in temporal
resolution and its reduced ability to extract reproducible brain
state signatures.

This analysis highlights the advantage of using topological
features derived from persistent homology over traditional
correlation-based approaches. While dFCN pipelines are
prone to capturing noise and suffer from over-fragmentation
of temporal brain states, the TDA pipeline produces stable
and interpretable cluster structures. These findings support
the hypothesis that TDA provides a more reliable abstraction
of temporal dynamics in brain connectivity, particularly in
clinical neuroimaging datasets with acquisition variability.

D. COMPUTATIONAL COMPLEXITY ANALYSIS

We now analyze the computational complexity of the TDA-
based (Sec. III) and nonTDA-based pipelines (Sec. IV) up
to the statistical analysis stage. Since the statistical analysis
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stage is common across all pipelines, our analysis focuses
on the pipeline-specific processing steps prior to statistical
testing. The computational trade-offs of the pipelines are
summarized in Table 1.

Let S denote the number of subjects (S = 316), T the
number of timepoints per subject (T = 754 in the largest
case), D the number of regions of interest (D = 113), and
D? = 12,769 the number of features in each flattened func-
tional connectivity network (FCN). The number of clusters
explored in KMeans is k = 15, and the maximum number of
KMeans iterations is T, = 300.

TDA-based pipeline: In the TDA-based pipeline, each
subject and timepoint undergoes persistent homology com-
putation on its FCN, resulting in a total cost of § - T -
Cpn. The computational cost for generating a single per-
sistence barcode is denoted by C,;,. For our approach, us-
ing the Gudhi library with the Vietoris—Rips complex and
max_dimension=1 on D = 113 ROIs, the time complex-
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TABLE 1: Computational trade-offs of each pipeline up to the statistical analysis stage. The second column shows the general
Big-O notation, while the third column gives the evaluated value in millions (M) for the largest values of the variables denoting
S =316, T = 754, D = 113 (D? = 12,769), k = 15, T, = 300. Example: For TDA-based: for the largest case, evaluates to
316 - 754 - 86,800 + 316 - 7542 + 316 - 754 - 15 - 300 = 20,871 M

Pipeline Computational Complexity (Big-O) Evaluated value (in M)
TDA-based O T-Cp+8-T2+S-T - k-Tx) 20,871M

Direct clustering ~ O(S-T -D? -k - Ty) 13,695,004 M
PCA-based O -T-D*+S§-T-k-Ty) 38,860,145 M
Traditional d(FCN ~ O(S -T2 -D?2 4+ S -T2+ S-T -k-Tx) 2,290,525 M

ity for O-dimensional persistent homology scales as Cp,, =
O(D?1og D), which yields approximately 86, 800 operations
per timepoint. After barcode extraction, each subject requires
apairwise Wasserstein distance matrix between all timepoints
(S - T?), two-dimensional MDS on this matrix (S - 72), and
k-means clustering (S - T - k - T}). The total computational
complexity is:

O(S-T-D*logD+S-T*>+S-T-k-Ty)

which, for the largest case, evaluates to 20,871 M.

Direct clustering pipeline: For direct clustering, all FCNs
for a subject are flattened into a (T x D?) matrix, and k-
means clustering is applied in the high-dimensional space.
The complexity is:

Ol -T-D* k-Ty)

which evaluates to 13,695,004 M.

PCA-based pipeline: In the PCA-based pipeline, the
(T x D?) FCN matrix is first reduced to two dimensions using
PCA, which has complexity S-7-(D?)? = S-T-D* per subject
(due to SVD on high-dimensional data), followed by k-means
clustering on the reduced matrix. The total computational
complexity is:

O -T-D*+5-T k-Ty)

which for the largest case evaluates to 38,860, 145 M.

Traditional dFCN clustering pipeline: In the traditional
dFCN pipeline, for each subject we compute a pairwise Eu-
clidean distance matrix (7" x T') between all D x D adjacency
matrices at all timepoints, with a cost of .S - T2 . D2, This is
followed by the same S - T2 MDS embedding and S - T - k - T},
k-means clustering as in the TDA-based pipeline. The total
computational complexity is:

O -T> D*+S-T*+S-T-k-Ty)
which, for the largest case, is 2,290, 525 M.

E. COMPARISON BETWEEN TDA-BASED AND NON-TDA
BASED PIPELINES

We extensively evaluated the accuracy and robustness of our
TDA pipeline for rs-fMRI analysis on a large-scale healthy
control dataset comprising 371,616 adjacency matrices across
316 subjects as well as a clinical ADHD dataset comprising
of 832 subjects. Comparisons are made to three alternative
approaches - direct clustering, PCA, and traditional FCN
analysis.
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Table 2 summarizes the systematic comparison between
TDA-based and NonTDA-based data processing pipelines
in terms of methodology, dimensionality reduction, cluster
interpretability, robustness (cohort-wide and pairwise simi-
larities), as well as their advantages and limitations. Clearly,
the TDA-based pipeline demonstrates significantly higher
robustness, interpretability, and consistency across differ-
ent temporal data acquisition parameters, albeit with higher
computational overhead, when compared to the NonTDA-
based methods. The NonTDA-based pipelines vary in their
advantages—such as simplicity, computational efficiency, and
low computational cost—but generally exhibit reduced robust-
ness, higher noise sensitivity, and lower interpretability. The
results demonstrate TDA’s superior ability to extract robust
and invariant topological signatures intrinsically linked to
resting-state functional architectures. Remarkably, the brain
states identified by TDA exhibit high consistency across the
three sampling frequencies, affirming resilience to acquisi-
tion variations. This also highlights TDA’s efficacy in miti-
gating non-neural variability and capturing fundamental dy-
namics as compared to conventional techniques. By applying
the persistent homology technique to filter noise and reveal
salient connectivity motifs, TDA provides a principled graph-
free technique for preserving temporal dynamics of complex
rs-fMRI data. These findings establish persistent homology
as a powerful approach for analyzing temporal patterns and
validating TDA as a promising pipeline for robust discovery
of data-driven functional brain states.

V1. DISCUSSION
MRI scanners around the globe vary in their configurations
and field strengths. This variation leads to a certain level
of noise in the data collected due to non-neural differences
introduced by the diverse scanner setups and data collection
parameters. This noise complicates the process of combining
data from different scanners into a single, large dataset for
unified analysis. Consequently, most fMRI brain network
research is localized, limited by the number of subjects that
can be scanned at a single location. This limitation reduces
the sample size and, therefore, the applicability of the results.
One solution is to conduct studies across multiple sites closer
to the target population. However, the noise introduced by
using different scanners and parameters diminishes the neural
effects of interest, thereby reducing the effectiveness of such
multi-site efforts.

We addressed these issues in our previous paper [8] in the
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TABLE 2: Systematic comparison between TDA-based and NonTDA-based data processing pipelines for rs-fMRI dataset

NonTDA-based pipelines

(Pairwise similarity) (78%, 77%, 74%)

Criteria TDA-based pipeline Direct clustering | PCA pipeline | Traditional dFCN
Methodology Per'sistc.::nt homology + Direct clustering PCA + Correlz}tion +
clustering clustering clustering

Dimensionality reduction | MDS None PCA MDS

(Distance function) (Wasserstein distance) (Euclidean distance)
Cluster interpretability High Low Low Low

(Cohort-wide similarity) (59%) (6%) (19%) (2%)

Robustness High Moderate Moderate Low

(75%, 23%, 21%)

(60%, 55%, 50%) (40%, 23%, 22%)

High robustness;

Simple, straightforward;

Moderate robustness; | Low computational cost;

Advantages Effecqve noise fl.l lerings | N preprocessing required | Reduced dimensions | Reduced dimensions
Clear interpretability

High dimensionality; . _— . e

Limitations Additional computations Noise sensitive; Poor interpretability; Poor interpretability;

Poor interpretability

Moderate robustness Noise sensitive

context of characterizing brain networks using static func-
tional connectivity. However, DFC is critical for understand-
ing how the brain processes information dynamically and how
the interactions between different brain regions change with
time. It has been shown that DFC is very important for char-
acterizing the healthy brain [3], [4], as well as in various brain
disorders [5]-[7]. Therefore, it becomes necessary to develop
a TDA-based framework for DFC so that investigations of
temporal dynamics in the brain are shielded from non-neural
variability in the data.

We validated the effectiveness of the proposed Topological
Data Analysis (TDA)-based pipeline by contrasting it with
the conventional data analysis pipelines outlined in Section
4. In the conventional pipelines, we employed direct time-
series clustering, PCA-based dimensionality reduction and
clustering, as well as traditional dynamic FCN pipeline with
MDS-based dimensionality reduction. The outcomes of this
pipeline strongly suggest that these conventional methods
fail to establish similarity across dynamic FCNs of the same
subjects obtained with different repetition times (TRs) and
acquisition parameters.

On the contrary, for the TDA-based metric, we demon-
strated both qualitatively and quantitatively that the metric
remains statistically consistent across the same subjects, re-
gardless of the sampling period used to acquire resting-state
fMRI data. This underscores the usefulness of TDA-based
analysis because, theoretically, data collected using different
parameters from the same subject should still represent the
same brain network dynamics.

VIl. CONCLUSION

In this study, we have demonstrated the effectiveness of
Topological Data Analysis (TDA) in uncovering temporal
properties within resting-state functional magnetic resonance
imaging (rs-fMRI) data. Our research highlights TDA’s ro-
bustness in the presence of varying temporal sampling rates,
surpassing traditional connectivity analysis methods. Key
findings emphasize TDA’s remarkable stability, with 59% of
subjects consistently showing clustering results across dif-
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ferent temporal sampling periods (2500ms, 1400ms, 645ms),
compared to less than 19% using nonTDA-based methods.
TDA also reveals strong pairwise similarities between sam-
pling periods, showcasing its ability to capture temporal dy-
namics. The robustness of the TDA pipeline is further con-
firmed through evaluation on clinical ADHD datasets, where
it achieves high consistency (> 80%) in clustering outcomes
across different sites and scanning conditions. In conclusion,
our study establishes TDA as a valuable tool for revealing
temporal nuances in rs-fMRI data, offering a level of robust-
ness unmatched by traditional methods. Through persistent
homology, TDA provides a stable, invariant representation of
dynamic brain connectivity, promising valuable insights into
complex temporal patterns in resting-state fMRI data across
diverse acquisition parameters. To promote reproducibility,
we have made all our code, scripts, data, and documentation
available at https://github.com/harp-lab/TemporalBrainPH.
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