
Message Broker System
Ahmedur Rahman Shovon

Codalo
shovon.sylhet@gmail.com



But I’ll actually talk about RabbitMQ



“Message broker translates a message from 
the formal messaging protocol of the sender 

to the formal messaging protocol of the 
receiver.”

From Wikipedia, the free encyclopedia



RabbitMQ is open source message broker 
software that implements the Advanced 

Message Queuing Protocol (AMQP).



The principal idea is pretty simple: it accepts 
and forwards messages. You can think about 
it as a post office: when you send mail to the 
post box you're pretty sure that Mr. Postman 

will eventually deliver the mail to your 
recipient. Using this metaphor RabbitMQ is a 

post box, a post office and a postman!



What can RabbitMQ do for you?
● Messaging enables software applications to connect and scale. Applications can 

connect to each other. Messaging is asynchronous, decoupling applications by 
separating sending and receiving data.

● Data delivery, non-blocking operations or push notifications, publish / subscribe, 
asynchronous processing, or work queues.

● RabbitMQ is a messaging broker - an intermediary for messaging. It gives your 
applications a common platform to send and receive messages, and your messages 
a safe place to live until received.



● Reliability

● Flexible Routing

● Clustering and Federation

● Highly Available Queues

● Multi-protocol with Many Clients

● Plugin System

F eature H ighlights



PRODUCER, QUEUE, CONSUMER
Remember these things please

A producer is a user application that sends messages.
A queue is a buffer that stores messages.

A consumer is a user application that receives messages.



Now let’s see messaging in action!



1 "Hello World!"

The simplest thing that does something

2 Work queues

Distributing tasks among workers

3 Publish/Subscribe

Sending messages to many consumers 

at once

4 Routing

Receiving messages selectively

5 Topics

Receiving messages based on a pattern

6 RPC

Remote procedure call implementation

https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html


What should I do to play with Rabbits?



Have a Windows machine? Start installing!
● ERLANG 64 bit exe: otp_win64_19.1.exe

● MS Visual C++ redistributable 2013 64 bit

● RabbitMQ Server: rabbitmq-server-3.6.5.exe

● RabbitMQ libraries based on the language

● Python client recommended by the RabbitMQ team: Pika 

● Pika Installation: pip install pika 



1 “Hello World!” - The simplest thing that does something

Our "Hello world" won't be too complex ‒ let's send a message, receive it and print it 
on the screen. To do so we need two programs: one that sends a message and one 
that receives and prints it.

Sending message to queue Receiving message from queue



Sending message...
Producer Script

Message is sent to the 
queue



Receiving message...
Consumer Script

Message is received 
from the queue



2 Work queues - Distributing tasks among workers

The main idea behind Work Queues (aka: Task Queues) is to avoid doing a resource-
intensive task immediately and having to wait for it to complete. Instead we schedule 
the task to be done later.

Sending message to queue Multiple consumers receiving message



Producer’s script (new_sender.py)
Producer Script is now 
updated to allow run time 
argument which contains 
messages



Consumer’s / Worker’s script (worker.py)
Receiver Script is now 
updated to allow pause to 
process the queue element. 
Lets think each consumer 
as a worker. We ensure the 
fair dispatch of queues 
using prefetch_count=1. 
Each “#” in message takes 
2 seconds to process.



Sending messages...
● Open two cmd and run 

worker.py in both prompt.

● Open another cmd and run 
new_sender.py.

● The messages with lot of # 
will take much time to 
process in worker



Receiving messages...
First worker received and 
processed messages faster 
because the fifth worker takes 
a lot of time to process only one 
message which takes time to 
process.



Real World Uses
● Fast logging solution

● Sending emails

● Sending SMSs

● Background processing (data analysis)



Want to learn more?
● Go to the official site of RabbitMQ: https://www.rabbitmq.com/

● How about Wiki? : https://en.wikipedia.org/wiki/RabbitMQ

https://www.rabbitmq.com/
https://en.wikipedia.org/wiki/RabbitMQ


And pass the messages… :D



Thank you.


