| 1

USENIX ATC 2023
Towards lterative Relational Algebra on the GPU

Authors:
Ahmedur Rahman Shovon, Thomas Gilray, Kristopher Micinski, Sidharth Kumar

LaBa Syracuse

THE UNIVERSITY OF . .
ALABAMA AT BIRMINGHAM. Ul’llVGl”Slty

Table of Contents 2

Datalog

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

Iﬂﬂié’fﬁfﬁ'gﬁﬂmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Table of Contents 3

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Datalog: Bottom-Up Logic Programming Language

A lightweight logic-programming language for deductive-database systems

-

-

Input
Database

~

/

Running the Datalog program extends data from input database creating the output

—>

Datalog
(set of rules)

—>

-

_

Output
Database

~

)

database with all data transitively derivable via the program rules

e Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about Datalog(and never dared to ask). IEEE transactions on knowledge and data engineering, 1(1), 146-166.

e Gilray, T., Kumar, S., & Micinski, K. (2021, March). Compiling data-parallel datalog. In Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction (pp. 23-35).

“THE UNIVERSITY OF
ALABAMA AT BIRMINGHAM.

Department of Computer Science — Ahmedur Rahman Shovon

© UAB. All Rights Reserved.

Classic Problems for Datalog 5

Transitive closure

Triangle counting

Finding maximal cliques
Finding frequent itemsets

Data mining

Oege De Moor, Georg Gottlob, Tim Furche, and Andrew Sellers. Datalog Reloaded: First InternationalWorkshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702.Springer, 2012.
Jiwon Seo, Stephen Guo, and Monica S Lam. Socialite: Datalog extensions for efficient social networkanalysis. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 278—-289.IEEE, 2013.

“miﬂ%\fﬁ@‘fﬂﬂmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Bottom-Up Logic Programming with Datalog 6

Datalog rule for computing Transitive Closure (TC)

T(x,y) <= G(x,V).
T(x,z) <= T(x,v), G(y,z).

! !

Operationalized as a fixed-point iteration using F;

Datalog

lterative

Relational Fg(T) 2 GU H1,2(p0/1(T) >q G)

Algebra / \ \

Relational algebra: | Union Projection Join

e Gilray, T., & Kumar, S. (2019, December). Distributed relational algebra at scale. In 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 12-22). IEEE.
e Kumar,S., & Gilray, T. (2020, June). Load-balancing parallel relational algebra. In International Conference on High Performance Computing (pp. 288-308). Springer, Cham.

“mié’fﬁfﬁ'ﬁﬂ,’mgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Table of Contents 7

Datalog

Iterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Relational Algebra Primitives

* Main relational algebra primitives of two flat relations R and S are:

* Union:RUS Relation

* Intersection:R N S UserlD UserName UserEmail

e Cartesian product: R x S . _ Tuple
. Join: RIS 101 Alice alice@example.com (Row)
* Rename: p;,(R) 102 Bob bob@example.com

Selection: o(R) W
ribute

(Column)
 Differ from traditional set theory: R and S have a fixed arity

Projection: I ,(R)

* Sidharth Kumar and Thomas Gilray. Distributed relational algebra at scale. In International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE, 2019.
* Sidharth Kumar and Thomas Gilray. Load-balancing parallel relational algebra. In International Conference on High Performance Computing, pages 288-308. Springer, 2020.

MITEBUEI\'J!\;\E%STIHR%I:NGHAM. Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Example of Natural Join

User
mmm
Alice alice@example.com
102 Bob bob@example.com
103 Eve eve@example.com
P>
Order
[Useri | orderto | ams
101 25.69 2
102 145.66 3
103 121 1
103 44.00 2

IELHEEA“E%%'ETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

M 10
Example of Natural Join X
User
UserlD | UserName UserEmail
101 Alice alice@example.com
102 Bob bob@example.com
User N Order
103 Eve eve@example.com
o 2

Alice alice@example.com 25.69

UserlD

101 25.69 2
102 145.66 3
103 121 1

103 44.00 2

Lﬁ}'ﬂié’,{"&,‘ﬂ%‘gﬂﬂmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Example of Natural Join

User
Alice alice@example.com
102 Bob bob@example.com
User N Order
103 Eve eve@example.com
Alice alice@example.com 25.69
Order 102 Bob bob@example.com 145.66 3
101 25.69 2
102 145.66 3
103 121 1
103 44.00 2

IELHEEA“E%%'ETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Example of Natural Join

User
Alice alice@example.com
102 Bob bob@example.com
User N Order
103 Eve eve@example.com
Alice alice@example.com 25.69
Order 102 Bob bob@example.com 145.66 3
m OrderTotal _ 103 Eve eve@example.com 121 1
101 25.69 2
102 145.66 3
103 121 1
103 44.00 2

IELTEEE&%%SHETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Example of Natural Join

User
Alice alice@example.com
102 Bob bob@example.com
User N Order
103 Eve eve@example.com
Alice alice@example.com 25.69
Order 102 Bob bob@example.com 145.66 3
m OrderTotal _ 103 Eve eve@example.com 121 1
101 2569 2 103 Eve eve@example.com 44,00 2
102 145.66 3
103 121 1
103 44.00 2

IELTEEE&%%SHETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Duplicates on Join Result ’

User <1 Order

Alice alice@example.com 25.69
102 Bob bob@example.com 145.66 3
103 Eve eve@example.com 1211 1
103 Eve eve@example.com 44.00 2

I_I(UserName,UserEmaiI)(USer X Order)

Alice alice@example.com
Bob bob@example.com
Eve eve@example.com
Eve eve@example.com

MITEBUEI\"I\.‘;\E%?ETR%I:NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Towards Parallel Relational Algebra

Thread Parallel
(Souffle)

Iterative Node Parallel

Relational
Algebra (DPRA)

GPU Parallel
(This work)

e Herbert Jordan, Bernhard Scholz, and Pavle Suboti’c. Souffl’e: On synthesis of program analyzers. Ininternational Conference on Computer Aided Verification, pages 422—-430. Springer, 2016.
* Kumar, S, & Gilray, T. (2019). Distributed relational algebra at scale. In International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE (Vol. 1).
* Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. Compiling data-parallel datalog. In Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction, CC 2021,page 23-35, New York, NY, USA, 2021. Association for

Computing Machinery.

}TEE}‘&“E&%‘ETR%?NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Parallel Join: Algorithms ’

Popular algorithms

Sort-Merge Join (SMJ) Hash Join (HJ)

SM1J is suitable for small to medium-sized tables, HJ is suitable for large tables

¢ Chengxin Guo, Hong Chen, Feng Zhang, and Cuiping Li. Parallel hybrid join algorithm on gpu. 2019IEEE 21st International Conference on High Performance Computing and Communications; IEEE17th International Conference on Smart City; IEEE 5th
International Conference on Data Science andSystems (HPCC/SmartCity/DSS), pages 1572—1579, 2019.
¢ Hongzhi Wang, Ning Li, Zheng ke Wang, and Jianing Li. Gpu-based efficient join algorithms on hadoop.The Journal of Supercomputing, 77:292 — 321, 2020.

LE}TE&’,{‘,&,‘{E&%‘ETR%ENGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Research Gaps in Parallel Join Implementations

@ Challenge for iterated relational algebra algorithms

() Negative impact on algorithm performance

LJE Memory overhead in Python libraries

wTHE UNIVERSITY OF
ALABAMA AT BIRMINGHAM Department of Computer Science — Ahmedur Rahman Shovon

Table of Contents :

Datalog

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Transitive Closure: Logical Inference for Graphs v

—

T(Xry) <- G(X'y)
T(X,Z) <- T(X'y)'G(y'Z)

WwnNnN - 00
AW WN -
O N-0OWN-~0O0
AP, PPWOPWOWON -

Department of Computer Science — Ahmedur Rahman Shovon

Fa(T) = G UL (po/1 (T) > G)
Transitive Closure: Iterations <

WN-~0O0
A WWN -

F

Department of Computer Science — Ahmedur Rahman Shovon

Fa(T) = G UL (po/1 (T) > G)
Transitive Closure: Iterations 1 =

WN-~0O0
A WWN -

2
0
0
1
2
3
0
1
2

A B WPrPrWWN -

Department of Computer Science — Ahmedur Rahman Shovon

WN =00
DWWN =
N =0 WN—=0O0 @

AP, WPL,WWN -
ON - 0OWN-~0O0
b WOWPLWWON-=-

“miﬂwfﬁlmﬁmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Fa(T) = G UL a(po1 (T) P G)
Transitive Closure: Iterations 3

5553 53

()
()
()

WN-~0O0

A WWN -
N—-~0O0OWN-0O0
AP WODPWWOWN -
ON-0O0OWN-~0O0
A, P, WOPL,WWON -
ON-0O0WN-~0O0
Db WOPLWON -

“THE UNWERA-SHETROFNGHAM_ Department of Computer Science — Ahmedur Rahman Shovon

TC Computation in lterated Relational Algebra)

IELTEEE&%%SHETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon

TC Computation in lterated Relational Algebra -

Hash Hash
Table Join

MITEBUEI\"I\.‘;\E%?ETR%I:NGHAM Department of Computer Science — Ahmedur Rahman Shovon

TC Computation in lterated Relational Algebra :

Hash Hash Sorting,
Table Join deduplication

“HEE&&"E&%‘ETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon

TC Computation in lterated Relational Algebra ;

Hash Hash Sorting,
Table Join deduplication

TC

“}Tié’m‘fﬂ%‘gﬂ%memm Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) -

e |

o \ ® o o
=
v
O |
2 35 l 44
M |23 _—
c 46 | 31
S
o 97132
m]
CUDA Threads Key - Value Hash Table Key-Value Pair

MITEBUEI\"I\.‘;\E%?ETR%I:NGHAM Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) ”

e

L Mumur3heshing | | T35 [aa)
(@] \‘ A. . ‘
5 R
(o) ‘
E 35 | 44 5]
1 | 23 r | -
_ IR _ AlmiccAs —
% 1 _—
3 97 | 32
CUDA Threads Key - Value Hash Table Key-Value Pair

Lﬁ}'{'ié’,{"&,‘ﬂ?f‘gﬂ%mgmm Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) ’

e

L Mumur3heshing | | T35 [aa)
(@] \‘ A. . ‘
5 R
(o) ‘
E 35 | 44 5]
1 | 23 r | -
_ IR _ AlmiccAs —
% 1 _—
3 97 | 32
CUDA Threads Key - Value Hash Table Key-Value Pair

Lﬁ}'{'ié’,{"&,‘ﬂ?f‘gﬂ%mgmm Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) ’

e

L Mumur3heshing | | T35 [aa)
(@] \‘ A. . ‘
5 R
(o) ‘
E 35 | 44 5]
1 | 23 r | -
_ TR _ AlmiccAs -
% [
3 97 | 32
CUDA Threads Key - Value Hash Table Key-Value Pair

Lﬁ}'{'ié’,{"&,‘ﬂ?f‘gﬂ%mgmm Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) i

gy S RLOERY | Mumur3heshing | T35 [aa)
o e o o ‘
2 e
[e) ‘
2 35 , 44 I _
1 123 . | — o 11| 23|
_ 7o | 5| ARTECASII
% ———
e} 97 | 32 -
CUDA Threads Key - Value Hash Table Key-Value Pair

LE}TE&’,{‘,&,‘{E&%‘ETR%ENGHAM Department of Computer Science — Ahmedur Rahman Shovon

Hash Table (Open Addressing, Linear Probing) .

. _ Grid Stride Loop | Mumur3heshing | {3544
o ® O o ‘
2 ..
(o) ‘
2 35 l 44 | _
1 123 . | — s 11|23]
_ I _ AlmiccAs -
% .
) 97 | 32 ; » 46 | 31
o o) . —— 1
CUDA Threads Key - Value Hash Table Key-Value Pair

“m‘iéﬂb\fﬁlggﬂfmgmm Department of Computer Science — Ahmedur Rahman Shovon

Performing Hash Join on GPU

Static Hash Table Reverse Relation

I C-lculate join size
P> EE—

34

Performing Hash Join on GPU

Static Hash Table Reverse Relation

T —

> — e)

Calculate join size

Join Result

_ 7

35

Performing Hash Join on GPU

Static Hash Table Reverse Relation

I C-lculate join size

< — e)

‘_

) oin Result

Deduplicated Join Result

36

Transitive closure computation (single iteration) =

Static Hash Table Reverse Relation T T =TUT

new

< .

Key

Table of Contents :

Datalog

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Experiment Platform and Datasets ’

ThetaGPU supercomputer from Argonne National Lab

CPU: AMD EPYC 7742 processors with 3.31GHz clock speed, 128 cores

GPU

« NVIDIA A100 Tensor Core GPU with 40GB GPU memory
« 108 multiprocessors on device (SM)

Environment

« CUDA version 11.4, 3,456 x 512 (blocks per grid x threads per block)
« Souffle version 2.3 with 128 threads

- cuDF package inside conda environment

- Stanford large network dataset collection
« SuiteSparse matrix collection
« Road network real datasets collection

Datasets

e Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.

“m‘iéﬂb\fﬁlggﬂfmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Table of Contents ‘

Datalog

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Hash Table Performance ’

* Build rate:
* Random synthetic graph: 400 million keys/second
e String graph: 4 billion keys/second

* Load factors are varied to ensure less memory overhead

MITEBLTI\"I\.‘;\E%SFIETR%?NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join Performance Comparison: CUDA vs cuDF

B CUDA Single Hashjoin

@ 1007 mmm cuDF
o

0]

(@]

o

’J."‘ 1.0 4

)

£

|_

c

o]

= 0.1+

-

)

()

x

L

o o (] o o (@] o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o (] o o (@] o o o o
o o o o o o o o o o
— N m < Tg] — N m <t LN
n n wn wn wn o o o o o
Datasets

Leadership Computing Facility, A. (2022). Argonne Leadership Computing Facility. Theta GPU Nodes. URL: https://www.alcf.anl.gov/support-center/theta-gpu-nodes

LELTEE,{*‘,{,,“E&%‘ETR%ENGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

CUDA Advantages over Dataframe

Fuse
operations

Thread-block
configuration

Memory
management

/

/

e Jason. Sanders. CUDA by example : an introduction to general-purpose GPU programming. AddisonWesley, Upper Saddle River, NJ, 2011.
¢ John Cheng, Max Grossman, and Ty McKercher. Professional CUDA ¢ programming. John Wiley & Sons, 2014

43

Optimize
data
structure

© UAB. All Rights Reserved.

“THE UNIVERSITY OF
ALABAMA AT BIRMINGHAM.

Department of Computer Science — Ahmedur Rahman Shovon

TC Performance Comparison: Memory Schemes)

B Pinned memory
s Unified memory

11.42 11.27

10.0 1

Execution Time(s) (log scale)

L
o
M

p2p-Gnutella09 p2p-Gnutellal4 CA-HepTh SF.cedge
Datasets

* Leadership Computing Facility, A. (2022). Argonne Leadership Computing Facility. Theta GPU Nodes. URL: https://www.alcf.anl.gov/support-center/theta-gpu-nodes

mmiéﬂffﬁ'gﬁﬁ”gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

| 45

TC Performance Comparison: CUDA vs Soufflé vs cuDF

CUDA
Dataset Type TC size Hashjoin(s Soufflé(s

fe_ocean 409,593 1,669,750,513 138.237 536.233 Out of Memory
p2p-Gnutella31 D 147,892 884,179,859 31 Out of Memory 128.917 Out of memory
usroads U 165,435 871,365,688 606 364.554 222.761 Out of Memory
fe_body U 163,734 156,120,489 188 47758 29.07 Out of Memory
loc-Brightkite U 214,078 138,269,412 24 15.88 29184 Out of Memory
SF.cedge U 223,001 80,498,014 287 11.274 17.073 64.417
fe_sphere U 49152 78,557,912 188 13159 20.008 80.077
CA-HepTh D 51,971 74,619,885 18 4.318 15.206 26115
p2p-GnutellaO4 D 39,994 47,059,527 26 2.092 7.537 14.005
p2p-Gnutella09 D 26,013 21,402,960 20 0.72 3.094 3.906
wiki-Vote D 103,689 11,947132 10 1137 3172 6.841
cti U 48,232 6,859,653 53 0.295 1.496 3181
delaunay_n16 U 196,575 6,137,959 101 1137 1.612 5.596
luxembourg_osm U 119,666 5,022,084 426 1.322 2.548 8194
ego-Facebook U 88,234 2,508,102 17 0.544 0.606 3.719
cal.cedge U 21,693 501,755 195 0.489 0.455 2756
TG.cedge U 23,874 481121 58 0.198 0.219 0.857
wing U 121,544 329,438 " 0.085 0193 0.905
OL.cedge U 7,035 146,120 64 0148 0181 0.523

“mié’fﬁfﬁlgﬂomﬁmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Cases Where Souffle Outperforms CUDA

Overflows GPU memory when
higher workload/iteration

Underperforms when less
work for GPU/iteration

Operations Breakdown per Iteration (fe_ocean) .

., | HEE Join
s Union
107 mmm Deduplication
W 038- B Memory clear -
Q
igo.s- | il ll
1 mh
0.4 4 {
0.2
0.0 4 _ I Il I - |
0 50 100 150 200

lteration

* Leadership Computing Facility, A. (2022). Argonne Leadership Computing Facility. Theta GPU Nodes. URL: https://www.alcf.anl.gov/support-center/theta-gpu-nodes

miéﬂd\fﬂﬁ'gnﬁﬁmemm Department of Computer Science — Ahmedur Rahman Shovon UAD. Al g Rosened

Contributions ‘

High Performance GPU hash table for iterative RA

Operations optimization (fuse join and projection)

Overcome deduplication challenge

Efficient GPU memory management (pinned and
buffer clearance)

IEITEEA\'&%%%'ETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

49

Limitations

Limited to a single GPU that dictates
scaling by available VRAM on the GPU

Memory overflow error for larger
graphs

Open addressing based hash table
causes memory overhead

Lﬁ}'{'ié’,{"&,‘ﬂ?f‘gﬂ%mgmm Department of Computer Science — Ahmedur Rahman Shovon

Table of Contents N

Datalog

lterative Relational Algebra on GPU

Transitive Closure Computation

Experimental Setup & Dataset

Results

Future Research Direction

“mié’fﬁfﬁggﬁﬁ“gmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Future Work ’

D | Multi-node multi-GPU backend for Datalog to perform iterated
eve Op relational algebra operations tailored for GPU

Different Parallel Programming Models performance on iterative

Com pare relational join

State-of-the-art multi-node CPU-based Datalog-like language SLOG to
leverage our GPU-based solutions

“ILTEE,H;ERA-SHETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

T https://github.com/harp-lab/usenixatc23

ARTIFACT
EVALUATED

ARTIFACT ARTIFACT
EVALUATED EVALUATED

usenix ruUsSenix
ASSOCIATION é’ ASSOCIATION

REPRODUCED FUNCTIONAL AVAILABLE

usenix
ASSOCIATION

https://github.com/harp-lab/usenixatc23

Thank youl!)

HARP Lab

High-performance Automated Reasoning and Programming Lab

https://github.com/harp-lab/

“}TES},&,“E&%‘ETR%ENGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

https://github.com/harp-lab/

“THE UNIVERSITY OF
ALABAMA AT BIRMINGHAM.

Appendix

DataFrame Based Datalog Applications -

Advantages Limitations

X
X
X
X

Abstract memory management No fusing

Abstract thread block configuration Memory and computation overhead

Same API sighatures for CPU and GPU No consecutive operation

C LK KX

Easy-to-code interface Memory limitation

A. R. Shovon, L. R. Dyken, O. Green, T. Gilray and S. Kumar, "Accelerating Datalog applications with cuDF," 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3), Dallas, TX, USA, 2022, pp. 41-45
Green, O., Du, Z., Patel, S., Xie, Z., Liu, H., & Bader, D. A. (2021, December). Anti-Section Transitive Closure. In 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 192-201). IEEE.
Team, R. D. (2018). RAPIDS: Collection of libraries for end to end GPU data science. NVIDIA, Santa Clara, CA, USA. https://rapids.ai

“miﬂm‘fﬁ@‘fﬂ%mgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

https://rapids.ai

Datalog Example :

Facts:

parents(x,y). .
children(y,x). extensional

Rules:
grandparent(x,y) :- parents(x,z), parents(z,y). intensional

head body

* Michael Stonebraker. Readings in database systems. Morgan Kaufmann Publishers Inc., 1988
e Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressivepower of logic programming. ACM Comput. Surv., 33(3):374-425, sep 2001.
* David Maier, K Tuncay Tekle, Michael Kifer, and David S Warren. Datalog: concepts, history, andoutlook. In Declarative Logic Programming: Theory, Systems, and Applications, pages 3—100. 2018.

Lﬁl‘fiéﬁ"&n‘fﬁ”&‘fsﬁﬁuch. Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Parallel Join i

Q What: Perform relational join operation simultaneously on a number
of processors or machines

When: Useful when input data is enormous and the join is
computationally costly

= How: Divide the data into partitions and assign each partition to a
R different processor

* Daniel Zinn, Haicheng Wu, Jin Wang, Molham Aref, and Sudhakar Yalamanchili. General-purpose join algorithms for large graph triangle listing on heterogeneous systems. In Proceedings of the 9th Annual Workshop on General Purpose Processing Using
Graphics Processing Unit, pages 12-21, 2016.

Iﬂ;‘ﬂi#pﬂfﬁ%’gﬁmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Datalog Timeline ’

Horn Clauses,

. . Decline, New Deductive Database,
McCarthy Datalog, Maier LDL, Commercial

Technologies Data Mining, ML

1972 | 1977 | 1980s | 2000s

1970 | 1975 | 1978 | 1990s | 2010s

Workshop, Gallaire,

: Regains Popularity,
Prolog, Kowalski Minker Popular, Databases

Semantic Web

* Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. What you always wanted to know about datalog(andnever dared to ask). IEEE transactions on knowledge and data engineering, 1(1):146-166, 1989

* David Maier, K Tuncay Tekle, Michael Kifer, and David S Warren. Datalog: concepts, history, andoutlook. In Declarative Logic Programming: Theory, Systems, and Applications, pages 3—100. 2018.

* Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging applications:An interactive tutorial. In Proceedings of the 2011 ACM SIGMOD International Conference onManagement of Data, SIGMOD ’11, page 1213—-1216, New York,
NY, USA, 2011. Association forComputing Machinery.

THE UNIVERSITY OF

ALABAMA AT BIRMINGHAM. Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Datalog Applications :

Modern Datalog
implementations: Soufflé,
SLOG, LogicBlox,

RadLog, PRAM

Domains

Deductive database Machine learning Software analysis Business analytics

_/ _/ _/

* Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated points-toanalyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications,
pages 243-262,2009.
* Jiwon Seo, Stephen Guo, and Monica S Lam. Socialite: Datalog extensions for efficient social networkanalysis. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 278-289.IEEE, 2013

“HEEA"&.\‘EQQR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Algorithm for TC computation usmg CUDA :

I: procedure TRANSITIVECLOSURE(Graph G)
| R < HashTable(G) |
‘result < Sort(G)

Th+ G
repeat

JoinSizePerRow <— JoinSize(R, Tx)

JjoinOffset < Scan(joinSizePerRow)

Initialize(joinResult, totalJoinSize)

JoinResult < Join((R, Ty), joinOffset)

joinResult < Sort(joinResult)

y TWO pa SS a p p roac h to p e rfo rm JjoinResult + RemoveDuplicates(joinResult)

2
3
4
5
6
7
8
9
10
I1:
P 12: totalUniqueJoinSize < Size(joinResult)
14:
15
16
17
18
19
20

* Open-Addressing based hash
table

' Tx < Copy(joinResult, totalU niqueJoinSize)
unionSize < resultSize + totalUniqueJoinSize
Initialize(unionResult, unionSize)
unionResult +— MergeSortedArrays(result, joinResulr)
unionResult +— RemoveDuplicates(unionResult
uniqueUnionSize < Size(unionResult)
oldUnionSize < Size(result)

* Deduplication using sort and
unigue, merge and unique

21: [FreeMemory(result) |

22: result < Copy(unionResult, uniquelU nionSize)
23: FreeMemory(joinOffser)

24 FreeMemory(joinResult)

25: FreeMemory(unionResult)

26: until oldUnionSize # unique UnionSize

27: FreeMemory(R)
28: FreeMemory(result)
29: FreeMemory(7})
30: return result

31: end procedure

IELTEEE&%%SHETR%NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Off-the-shelf Data Structure ’

| pandas RAP)DS

A

DataFrame: 2D labeled tabular data structure

CPU (NVIDIA)

Both supports RA primitives (e.g. join, aggregation, rename, deduplication, and projection)

Reback, J., McKinney, W., Van Den Bossche, J., Augspurger, T., Cloud, P., Klein, A, ... & Seabold, S. (2020). pandas-dev/pandas: Pandas 1.0. 5. Zenodo.

Chen, D. Y. (2017). Pandas for everyone: Python data analysis. Addison-Wesley Professional.

Green, O., Du, Z., Patel, S., Xie, Z., Liu, H., & Bader, D. A. (2021, December). Anti-Section Transitive Closure. In 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 192-201). IEEE.
Fender, A., Rees, B., & Eaton, J. RAPIDS cuGraph. In Massive Graph Analytics (pp. 483-493). Chapman and Hall/CRC.

MITEBLTI\"I\.‘;\E%SFIETR%?NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Hash Join Initialization on GPU ’

Input Relation Static Hash Table

—

Reverse Relation

“mi&wfi'srlgnﬁﬁmcmhn, Department of Computer Science — Ahmedur Rahman Shovon © UAB. Al Rights Reserved.

Why Join is Important in RA?)

EH 1h. -

COMBINE DATA FROM FIND PATTERNS IN CLEAN DATA CREATE NEW DATA
MULTIPLE TABLES DATA SETS

Daniel Zinn, Haicheng Wu, Jin Wang, Molham Aref, and Sudhakar Yalamanchili. General-purpose join algorithms for large graph triangle listing on heterogeneous systems. In Proceedings of the 9th Annual Workshop on General Purpose Processing Using
Graphics Processing Unit, pages 12-21, 2016.

MITEBLTI\"I\.‘;\E%SFIETR%?NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Soufflé :

* A variant of Datalog for static analysis using OpenMP

» State-of-the-art implementation for multi-core CPU systems with single-node
* Translates Datalog programs to optimized C++ programs

e Supports limited number of threads for task-level parallelism

Cannot provide data parallelism

* Herbert Jordan, Bernhard Scholz, and Pavle Suboti’c. Souffl’e: On synthesis of program analyzers. Ininternational Conference on Computer Aided Verification, pages 422-430. Springer, 2016.
e Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. Compiling data-parallel datalog. InProceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction, CC 2021,page 23-35, New York, NY, USA, 2021. Association for
Computing Machinery.

“}TEEA"&,‘{E&%‘ETR%'TNGHAM_ Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

65

Parallel Join (Continue)

Design Implement Optimize

Consider partition, Challenging due to Efficient joins
load balancing, the uncertain output requires sorting or

communication size indexing

* Daniel Zinn, Haicheng Wu, Jin Wang, Molham Aref, and Sudhakar Yalamanchili. General-purpose join algorithms for large graph triangle listing on heterogeneous systems. In Proceedings of the 9th Annual Workshop on General Purpose Processing Using
Graphics Processing Unit, pages 12-21, 2016.

Iﬂ}'ﬂié’}ﬂ,‘fﬁ%‘}‘;’ﬂﬂfNGHm_ Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserve

Hybrid Join Algorithm -

* Guo et al. proposed PHYJ: SMJ with HJ join

* Reduced host-to-device and device-to-host

* Fused data communication with GPU execution
* On a single GPU achieved up to 1.72X speedup
e Can handle skewed data

No information on multiple GPUs or distributed systems

* Chengxin Guo, Hong Chen, Feng Zhang, and Cuiping Li. Parallel hybrid join algorithm on gpu. 20191EEE 21st International Conference on High Performance Computing and Communications; IEEE17th International Conference on Smart City; IEEE 5th
International Conference on Data Science andSystems (HPCC/SmartCity/DSS), pages 1572—1579, 2019.
* Hongzhi Wang, Ning Li, Zheng ke Wang, and Jianing Li. Gpu-based efficient join algorithms on hadoop.The Journal of Supercomputing, 77:292 - 321, 2020.

Iﬂﬂié’fﬁfﬁ'gﬁﬂmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join on GPUs: Benchmark 7

Rui et al. assessed NINLJ, INLJ, SMJ, and HJ on modern GPU

* Modern GPUs can lead to 20X speedup VS 7X speedup of old GPUs
* Not suitable for HPC systems with multiple GPU environments

New GPU architecture is introduced (Nvidia Hopper architecture)

* Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and Pedro Sander.Relational joins on graphics processors. In Proceedings of the 2008 ACM SIGMOD internationalconference on Management of data, pages 511-524, 2008.
¢ Ran Rui, Hao Li, and Yi-Cheng Tu. Join algorithms on gpus: A revisit after seven years. In 2015 IEEEInternational Conference on Big Data (Big Data), pages 2541-2550. IEEE, 2015.
* Anne C Elster and Tor A Haugdahl. Nvidia hopper gpu and grace cpu highlights. Computing in Science& Engineering, 24(2):95-100, 2022.

“}TE&’A"&‘E&%‘HR%F,NGHAM Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join on GPUs: LogiQL *

* Wu et al. presents Red Fox high-performance accelerator core for LogiQL queries
e Outperforms multi-threaded CPU-based implementations
* Novel: multi-predicate join algorithm (worst-case optimal) on GPU

Issue: deduplication of tuples and maintaining join result in sorted order

* Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael Garland, andSudhakar Yalamanchili. Red fox: An execution environment for relational query processing on gpus. InProceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization,pages 44-54, 2014.

¢ Haicheng Wu. Acceleration and execution of relational queries using general purpose graphics processingunit (GPGPU). PhD thesis, Georgia Institute of Technology, 2015.

Iﬂﬂié’fﬁfﬁ'ﬁgﬁmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join on GPUs: Relational Learning Framework ’

* Expedites rule coverage on GPUs for healthcare records data
* Outperforms 75% of applications over multi-core CPU systems

* Duplicate tuples not efficiently managed and GPU memory overflows

e Carlos Alberto Mart’inez-Angeles, Haicheng Wu, In"es Dutra, V'itor Santos Costa, and Jorge BuenabadCh’avez. Relational learning with gpus: Accelerating rule coverage. International Journal of ParallelProgramming, 44(3):663-685, 2016

Lﬁl‘fiéﬁ"&n‘fﬁ”&‘fsﬁﬁuch. Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join on GPUs: Control Flow Analysis (CFA) -

L_.___li Parallel functional CFA encoded in Datalog utilizes RA as the
foundation on GPU

Extended Red Fox combining GPU parallelism with multi-node multi-
core HPC

il

Proposed partitioned global address space (PGAS) programming
model

Ble

* THOMAS GILRAY and SIDHARTH KUMAR. Toward parallel cfa with datalog, mpi, and cuda. InScheme and Functional Programming Workshop, 2017.

Iﬂ;‘ﬂié’fﬁfﬁ'ﬁgﬂmgmm_ Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

Join on GPUs: WarpDrive '

* Junger et al. presented a single-node multi-GPU hashing for hashjoin
* Attained better memory coalescing

e Hashtable insertion rate;
* 1.4B keys/sec (single GPU)
* 4.3B keys/sec (4 GPUs)

* 32 bit keys only with no deduplication
* Incremental study: WarpCore supports 64 bit keys

* Daniel J'unger, Christian Hundt, and Bertil Schmidt. Warpdrive: Massively parallel hashing on multigpu nodes. In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages441-450. IEEE, 2018.

* Daniel J'unger, Robin Kobus, Andr’e M"uller, Christian Hundt, Kai Xu, Weiguo Liu, and Bertil Schmidt.Warpcore: A library for fast hash tables on gpus. In 2020 IEEE 27th International Conference on HighPerformance Computing, Data, and Analytics (HiPC),
pages 11-20, 2020.

Iﬂﬂié’fﬁfﬁ'ﬁgﬁmgmm Department of Computer Science — Ahmedur Rahman Shovon © UAB. All Rights Reserved.

	Slide 1
	Slide 2: Table of Contents
	Slide 3: Table of Contents
	Slide 4: Datalog: Bottom-Up Logic Programming Language
	Slide 5: Classic Problems for Datalog
	Slide 6: Bottom-Up Logic Programming with Datalog
	Slide 7: Table of Contents
	Slide 8: Relational Algebra Primitives
	Slide 9: Example of Natural Join ⨝
	Slide 10: Example of Natural Join ⨝
	Slide 11: Example of Natural Join ⨝
	Slide 12: Example of Natural Join ⨝
	Slide 13: Example of Natural Join ⨝
	Slide 14: Duplicates on Join Result
	Slide 15: Towards Parallel Relational Algebra
	Slide 16: Parallel Join: Algorithms
	Slide 17: Research Gaps in Parallel Join Implementations
	Slide 18: Table of Contents
	Slide 19: Transitive Closure: Logical Inference for Graphs
	Slide 20: Transitive Closure: Iterations
	Slide 21: Transitive Closure: Iterations 1
	Slide 22: Transitive Closure: Iterations 2
	Slide 23: Transitive Closure: Iterations 3
	Slide 24: TC Computation in Iterated Relational Algebra
	Slide 25: TC Computation in Iterated Relational Algebra
	Slide 26: TC Computation in Iterated Relational Algebra
	Slide 27: TC Computation in Iterated Relational Algebra
	Slide 28: Hash Table (Open Addressing, Linear Probing)
	Slide 29: Hash Table (Open Addressing, Linear Probing)
	Slide 30: Hash Table (Open Addressing, Linear Probing)
	Slide 31: Hash Table (Open Addressing, Linear Probing)
	Slide 32: Hash Table (Open Addressing, Linear Probing)
	Slide 33: Hash Table (Open Addressing, Linear Probing)
	Slide 34: Performing Hash Join on GPU
	Slide 35: Performing Hash Join on GPU
	Slide 36: Performing Hash Join on GPU
	Slide 37: Transitive closure computation (single iteration)
	Slide 38: Table of Contents
	Slide 39: Experiment Platform and Datasets
	Slide 40: Table of Contents
	Slide 41: Hash Table Performance
	Slide 42: Join Performance Comparison: CUDA vs cuDF
	Slide 43: CUDA Advantages over Dataframe
	Slide 44: TC Performance Comparison: Memory Schemes
	Slide 45: TC Performance Comparison: CUDA vs Soufflé vs cuDF
	Slide 46: Cases Where Souffle Outperforms CUDA
	Slide 47: Operations Breakdown per Iteration (fe_ocean)
	Slide 48: Contributions
	Slide 49: Limitations
	Slide 50: Table of Contents
	Slide 51: Future Work
	Slide 52
	Slide 53: Thank you!
	Slide 54: Appendix
	Slide 55: DataFrame Based Datalog Applications
	Slide 56: Datalog Example
	Slide 57: Parallel Join
	Slide 58: Datalog Timeline
	Slide 59: Datalog Applications
	Slide 60: Algorithm for TC computation using CUDA
	Slide 61: Off-the-shelf Data Structure
	Slide 62: Hash Join Initialization on GPU
	Slide 63: Why Join is Important in RA?
	Slide 64: Soufflé
	Slide 65: Parallel Join (Continue)
	Slide 66: Hybrid Join Algorithm
	Slide 67: Join on GPUs: Benchmark
	Slide 68: Join on GPUs: LogiQL
	Slide 69: Join on GPUs: Relational Learning Framework
	Slide 70: Join on GPUs: Control Flow Analysis (CFA)
	Slide 71: Join on GPUs: WarpDrive

