#### Jahangirnagar University

Institute of Information Technology

#### An Optimized RESTful E-Governance Application Framework for People Identity Verification in Cloud

<u>Presented By:</u> Ahmedur Rahman Shovon Roll: 160029 <u>Supervised By:</u> Dr. Md. Whaiduzzaman, Associate Professor, Institute of Information Technology, Jahangirnagar University

#### Problem Statement (1/2):

-> People identity verification using face recognition, police clearance and information validation is a long process.

-> This delay happens due to the direct involvement of people and inaccessibility towards government maintained citizen database.

-> Faces of individuals are increasing day by day but are not properly mapped.

-> As a result, Government can not track the change of face identities of the individuals.

#### Problem Statement cont'd (2/2):

-> To verify an individual's identity, an organization needs to perform:

- Vital information validation from Government database (no public access)
- Face recognition of current photo and authorized photo (no face recognition system provided by Government)
- Clearance of police records of that individual (manual process that requires local police involvement)

-> Digitization of identity verification is a very promising sector to work on.

# Related Works (1/3):

Real time face recognition system (RTFRS) [1]:

- Developed a Windows based desktop application for face recognition.
- Error rate under normal conditions: 3%.

#### A study of face recognition as people age [2] [21] [22]:

- Studied face recognition across ages within passport photo verification task.
- Showed how age differences affect recognition performance.
- Observed that difficulty of face recognition algorithms saturated after the age gap is larger than four years (up to ten years).

## Related Works cont'd (2/3):

Face Recognition: A Literature Survey [3], [25]:

- Provided an up-to-date critical survey of face recognition research.
- Showed insights of machine recognition of faces.
- Listed typical applications of face recognition in public services.

Using cloud computing for e-government: challenges and benefits [4]:

- Discussed about the benefits of using cloud computation in E-governance.
- Presented government's enhanced ability to interact and collaborate.

# Related Works cont'd (3/3):

Cloud Based E-governance Services [5], [6], [7], [23]:

- Showed cloud computing advantages in various parts of E-government [20].
- Availability, cost efficiency, scalability, storage capacity and security are enlisted.
- Proposed a cloud based model for national E-governance plan [8].

#### RESTful Application Framework [9], [24]:

- RESTful based web technology is gaining attractions in developed countries.
- Integrated RESTful web services and cloud computing [10].
- Proposed a model to design and describe REST API maintaining constraints [11].
- Demonstrated good practice of developing RESTful application framework [12].

# Objectives (1/2):

- Survey existing people identity verification systems.
- Identify need of RESTful approach for people identity verification.
- Analyze pros and cons of cloud based solution to develop the framework for a successful E-governance system.
- Compare cloud based face recognition services.

### Objectives cont'd (2/2):

- Present an algorithm for people identity verification using face recognition, police clearance and information validation.
- Develop an optimized RESTful E-Governance Application Framework based on the algorithm.
- Evaluate the framework's accuracy, scalability and reliability based on resource utilization, application performance, and operational health.

#### **Existing Research Limitations:**

- No cloud based people identity verification framework is proposed.
- Face recognition is not mapped with people's database.
- Authorized organizations can not access government maintained citizen database.
- No RESTful API is developed to automate people identity verification.
- No deep learning-based image recognition services is used.
- No deployment model is shown to search, verify and organize millions of images in cloud.

#### **Overview:**

- An optimized people identity verification framework.
- Utilization of cloud for E-Governance application.
- RESTful approach for better and secure service provision.
- Deep learning based face recognition using cloud services mapped with individuals.

### **Block Diagram:**



# Application Framework Architecture (1/6):

- Framework has two parts:
  - REST API
  - API Dashboard
- Developed using Python Flask Framework.
- Uses Amazon Web Services (AWS) [13].
- JSON Web Token (JWT) [14] provides JSON based access tokens.
- Deep learning based AWS Rekognition services [15] for face recognition and facial vector data storage.
- SQLAlchemy, an ORM is connected with MySQL database [16].
- ELB and Auto Scaling ensures scalability [17].
- CloudWatch monitors AWS resources [18].

#### Architecture cont'd – System Architecture (2/6):



Figure: System Architecture of People Identity Verification Application Framework

## Architecture cont'd – Software (3/6):

| Software        | Description                                                                |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------|--|--|--|--|--|--|
| Python          | Version 3.6.1                                                              |  |  |  |  |  |  |
| Flask           | ersion 0.12.2                                                              |  |  |  |  |  |  |
| MySQL           | Version 5.7.19                                                             |  |  |  |  |  |  |
| SQLAIchemy      | SQLAlchemy version 1.1.12<br>Flask-SQLAlchemy version 2.2                  |  |  |  |  |  |  |
| JSON Web Tokens | PyJWT version 1.5.2<br>Flask-JWT version 0.3.2                             |  |  |  |  |  |  |
| AWS CLI         | AWSCLI version 1.11.112<br>Boto3 version 1.4.4<br>Boto-core version 1.5.75 |  |  |  |  |  |  |

Table: Software Description of People Identity Verification Application Framework

## Architecture cont'd – Hardware (4/6):

| Hardware             | Description                                                                                  |
|----------------------|----------------------------------------------------------------------------------------------|
| VPC                  | 3 private subnets and 1 public subnet                                                        |
| Bastion Node         | Access the others servers as it includes the public inbound rules and private outbound rules |
| API & Dashboard Node | Flask API and dashboard node. All AWS services like Rekognition, AMI, AWSCLI are integrated. |
| Database Node        | Database is hosted in this node. Configured with only private access from other nodes.       |
| Load Balancers       | 2 Elastic Load Balancers handle all inbound traffic                                          |
| Security Groups      | Handles inbound and outbound traffic in each node                                            |

Table: Hardware Description of People Identity Verification Application Framework

# Architecture cont'd – API Design (5/6):

- Stateless Design: No session storage
- Self-descriptive Messages: Simple request-response format
- Semantics: Use features of the HTTP protocol including
  - HTTP Verbs
  - HTTP Status Codes
  - HTTP Authentication
- I/O Format: JSON
- URL Structure: Descriptive, utilized natural hierarchy of path structure
- Authentication: JWT based access token generated by credentials
- Timestamps: ISO-8601 standard [14]
- Error Handling: Returns semantic HTTP status code in each response

### Architecture cont'd – Database Design (6/6):

authenticated\_organisation PK organisation\_id organisation\_email\_address organisation\_password organisation\_name organisation\_address organisation\_phone\_number organisation\_email\_address organisation\_registration\_id organisation\_registration\_address organisation\_details

| aws face                                                                  | people                                                                                                                                                                                                                                                                                                                                                                      | police record                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aws_face<br>PK face_id<br>FK national_id<br>face_created_time<br>face_url | PK national_id<br>full_name<br>father_name<br>mother_name<br>date_of_birth<br>gender<br>birth_district<br>permanent_address<br>present_address<br>email_address<br>phone_number<br>blood_group<br>nationality<br>religion<br>marital_status<br>spouse_name<br>tin_number<br>passport_number<br>driver_license_number<br>photo_url<br>created_timestamp<br>updated_timestamp | <pre>police_record<br/>PK case_id<br/>FK case_complainer_national_id<br/>FK case_investigator_national_id<br/>FK case_defendant_national_id<br/>case_status<br/>case_description<br/>case_location<br/>case_outcome<br/>case_created_time<br/>case_updated_time</pre> |

#### Figure: Database Model Diagram of People Identity Verification Application Framework

#### **Process Flowchart:**



## Algorithm:

end

| API call;                                                  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|--|--|--|
| if $TOKEN$ in Request = True then                          |  |  |  |  |  |  |  |
| if $Validity_{TOKEN} = True$ then                          |  |  |  |  |  |  |  |
| if NID, personal information & image in Request then       |  |  |  |  |  |  |  |
| if $NID_{found} = True$ then                               |  |  |  |  |  |  |  |
| if personal information & image matches with database then |  |  |  |  |  |  |  |
| Get <i>Face_List</i> from Database;                        |  |  |  |  |  |  |  |
| Set $Max_{Score} = 0$ ;                                    |  |  |  |  |  |  |  |
| foreach Face in Face_List do                               |  |  |  |  |  |  |  |
| Calculate similarity score;                                |  |  |  |  |  |  |  |
| Set $Max_{Score} = max(score, max\_score);$                |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| if $Max_{Score} > 80$ then                                 |  |  |  |  |  |  |  |
| if $Max_{Score} < 95$ then                                 |  |  |  |  |  |  |  |
| Store image in Collection;                                 |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| Get $Records_{Police}$ ;                                   |  |  |  |  |  |  |  |
| if $Clearence = True$ then                                 |  |  |  |  |  |  |  |
| Return: Verification Success with all data;                |  |  |  |  |  |  |  |
| end end                                                    |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return Error with case record details;                     |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| end end                                                    |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return Error: Image match failed;                          |  |  |  |  |  |  |  |
| end end                                                    |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return $Verified = True;$                                  |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return Error: <i>NID</i> not found;                        |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return Error: Missing mandatory fields;                    |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return: TOKEN not valid;                                   |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| end                                                        |  |  |  |  |  |  |  |
| else                                                       |  |  |  |  |  |  |  |
| Return: TOKEN not found;                                   |  |  |  |  |  |  |  |

19

#### Evaluation – Face Recognition Accuracy (1/6):

- Constraint: Primarily Face collection contains one face per person
- Test Face Set: Face Recognition Technology(FERET) database [19]
- First Iteration Result: Error rate = 1.60% (one face per person) (better than [1])
- Second Iteration Result: Error rate = 1.13% (avg. two faces per person)



![](_page_19_Figure_6.jpeg)

### Evaluation cont'd – Load Testing (2/6):

- Metric: Network packet counts (CloudWatch Metric)
- Methodology: Custom script generates random number of hits for a time period
- Axis Information: X axis time frame, Y axis number of network packets
- **Result:** Normal operational health. (Better than non cloud hosts)

![](_page_20_Figure_5.jpeg)

#### Figure: API Packet Counts

#### Figure: Dashboard Packet Counts 21

## Evaluation cont'd – Scalability (3/6):

- Metric: CPU Utilization (CloudWatch Metric)
- Methodology: Custom script consumes arbitrary CPU power for a time period
- Axis Information: X axis time frame, Y axis CPU utilization
- Result: Normal operational health. No system damage. (Reliable than static hosts)

![](_page_21_Figure_5.jpeg)

# Evaluation cont'd – Availability (4/6):

- Metric: Auto Scaling (CloudWatch Metric)
- Methodology: Custom script consumes arbitrary CPU power for a time period
- Axis Information: X axis time frame, Y axis CPU utilization
- **Result:** Generated alert for low and excessive CPU utilization added and detached additional computing resources as needed (Better than client server hosting)

![](_page_22_Figure_5.jpeg)

Figure: Generated Alert when the CPU utilization was under 15% for 8 hours

# Evaluation cont'd – API HTTP Status Code (5/6):

- Metric: Elastic Load Balancer HTTP Status Code Counts (CloudWatch Metric)
- Methodology: Log HTTP status code in ELB for a time period
- Axis Information: X axis time frame, Y axis status count
- Result: 99.65% Health Hosts Count (API integration is proved successful)

![](_page_23_Figure_5.jpeg)

#### Figure: Elastic Load Balancer HTTP Status Code Counts

# Evaluation cont'd – Cost Efficiency (6/6):

- Metric: AWS Services Cost Metrics (CloudWatch Metric)
- Methodology: Log service costs within a date range
- Axis Information: X axis date, Y axis costs by different services
- Result: Dynamic costing based on consumed services.

A Monthly costs by service

![](_page_24_Figure_6.jpeg)

#### Figure: Monthly costs by consumed services

#### Result – Request Sample (1/3):

- Authorization: Any organization with valid access token can send request
- API Path: Request should follow fixed API path
- Mandatory Fields: 6 mandatory fields should be attached with each request
- Platform / Framework Dependency: No platform / framework dependency

| People verification form | 1                                                                                                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|
| I Mandatory fields: nat  | tional id, full name, father name, mother name, date of birth, gender, permanent address, blood group and image |
|                          |                                                                                                                 |
|                          |                                                                                                                 |
| National ID              | 19929196123123445                                                                                               |
| Full Name                | Ahmedur Rahman Shovon                                                                                           |
| Eathor Name              | Md Abdus Subhan                                                                                                 |
| Father Name              | Ma, Abdus Subhan                                                                                                |
| Mother Name              | Helen Begum Chowdhury                                                                                           |
| Date of Birth            | 30-11-1992                                                                                                      |
| Gender                   | Male <b>v</b>                                                                                                   |
| Permanent Address        | House#2, Road#21, Block#B, Shahjalal Upashahar, Sylhet Sadar, Sylhet.                                           |
| Blood Group              | B+ •                                                                                                            |
| Photo                    | Choose File github_edited.jpg                                                                                   |
|                          |                                                                                                                 |

#### Figure: Input form sample for People Identity Verification Application Framework

#### Result – Response (2/3):

|  |  | L |
|--|--|---|

"status\_code": string "200",
"status": string "valid",

"data": object {

"personal\_information": object {

"national\_id": string "19929196123123445",

"full\_name": string "Ahmedur Rahman Shovon",

"father\_name": string "Md. Abdus Subhan",

"mother\_name": string "Helen Begum Chowdhury",

"gender": string "male",

"address": string "House#2, Road#21, Block#B, Shahjalal Upashahar, Sylhet Sadar, Sylhet.", "dob": string "1992-11-30",

"email": string "shovon.sylhet@gmail.com",

"phone": string "+8801731246426",

"blood\_group": string "B+",

"photo\_url": string "19929196123123445\_1502852020506\_github\_edited.jpg",

"religion": string "Islam",

"nationality": string "Bangladeshi"

#### },

"face\_index": array [

#### object <mark>{</mark>

"face\_id": string "e340bc25-feb5-5917-ade1-d91845602bb0",
"face\_timestamp": string "2017-08-16 02:53:40.504936",
"face\_url": string "29\_1502852020506\_github\_edited.jpg"

#### }, object {

"face\_id": string "45825738-0784-5738-9978-92f3e4c3e478",
"face\_timestamp": string "2017-08-28 04:39:35.180052",
"face url": string "29 1503895159346 cover2.jpg"

#### ], "police\_record": array[

police\_record": array

#### }, "maximum\_face\_similarity": string "87%", "inserted in face collection": string "T

"inserted\_in\_face\_collection": string "True",
"error": array [

#### Figure: Sample response from People Identity Verification Application Framework

## Result – API Dashboard (3/3):

• Authorization: Only the Government can access API dashboard

| People Identity Verification                              | ≡                                                                                   |                   |                             |           |                |                                               |                                            |                                                                                                |                                                            | 4           | Admin  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|-----------------------------|-----------|----------------|-----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|--------|
| Search Q                                                  | People Identity Verification API Dashboard Showing People List from People Database |                   |                             |           |                |                                               |                                            |                                                                                                | 🚯 Dashb                                                    | oard > Home |        |
| People Database                                           | 150                                                                                 |                   | -                           | 93%       |                | 1.1                                           | 44                                         |                                                                                                | 65                                                         |             |        |
| 🖀 Home                                                    | New Face                                                                            | es                |                             | Call Back |                | - di 1                                        | People Registrations                       | - At                                                                                           | Unique Faces                                               |             |        |
| S Collections                                             |                                                                                     | More info Đ       |                             |           | More info      | • •                                           | More inf                                   | o <del>O</del>                                                                                 | More                                                       | e info Đ    |        |
| Show Faces AWS                                            | People                                                                              | List              |                             |           |                |                                               |                                            |                                                                                                |                                                            |             | -      |
| Show Faces Local                                          | reopie                                                                              | LISC              |                             |           |                |                                               |                                            |                                                                                                |                                                            |             |        |
| Show Police Verification                                  | Photo                                                                               | National ID       | Full Name                   | Gender    | DOB            | Address                                       |                                            | Faces                                                                                          |                                                            | Acti        | on     |
| Add Police Verification                                   |                                                                                     | 19929196123123445 | Ahmedur<br>Rahman<br>Shovon | Male      | 1992-<br>11-30 | House# 2, Road# 21, E<br>Upashahar, Sylhet Sa | 3lock# B, Shahjalal<br>dar, Sylhet - 3100. | <ul> <li>e340bc25-fe</li> <li>d91845602b</li> <li>02:53:40.504</li> <li>45825738-00</li> </ul> | b5-5917-ade1-<br>b0 - 2017-08-16<br>1936<br>784-5738-0078- | ×           | Delete |
| <ul> <li>♣ Add People</li> <li>✓ Verify People</li> </ul> |                                                                                     |                   |                             |           |                |                                               |                                            | 92f3e4c3e47<br>04:39:35.180                                                                    | 78 - 2017-08-28<br>0052                                    |             |        |
|                                                           |                                                                                     | 19929196123123853 | Shanto Roy                  | Male      | 1992-<br>05-04 | 664/A, Road# 9, Mirpu                         | ır DOHS, Dhaka                             | <ul> <li>d7975fd8-28</li> <li>636096f5dc4</li> <li>16:35:23.392</li> </ul>                     | 975-5063-ad05-<br>4f - 2017-08-20<br>2409                  | ×           | Delete |

#### Figure: API Dashboard of People Identity Verification Application Framework

#### **Assumptions and Limitations:**

- People database should have at least one valid photo for each enlisted people.
- Initially when the database has a single image per person that may lead to a minor error in face recognition operations.
- Authenticated access tokens should be kept secret by the organizations.

#### Future work:

- Develop machine learning based analytics on stored face meta data.
- Identify people from Closed-Circuit Television (CCTV) footages or videos.
- Detect listed criminals from live video feeds.
- Generate alerts and inform security reinforcements after detecting criminals.
- Identify people after severe accident on transportation.
- Block unwanted access to security parameters using automated entry system.

#### **Conclusion:**

- Assured delivery of public services in a faster way eradicating long analog verification processes.
- Smoothened the path to establish better E-governance using People Identity Verification Application Framework.
- Showed improved accuracy.
- Performed benchmarking based on major factors.
- Created opportunity to utilize people face meta data for further research.

![](_page_31_Picture_0.jpeg)

[1] S. Haji and A. Varol. "Real time face recognition system (RTFRS)". In: 2016 4th International Symposium on Digital Forensic and Security (ISDFS). 2016, pp. 107–111. doi: 10.1109/ISDFS.2016.7473527.

[2] Haibin Ling et al. "A study of face recognition as people age". In: Computer Vision, 2007. ICCV 2007. IEEE 11<sup>th</sup> International Conference on. IEEE. 2007, pp. 1–8.

[3] W. Zhao et al. "Face Recognition: A Literature Survey". In: ACM Comput. Surv. 35.4 (Dec. 2003), pp. 399–458. issn: 0360-0300. doi: 10.1145/954339.954342. url: http://doi.acm.org/10.1145/954339.954342.

[4] Sajjad Hashemi, Khalil Monfaredi, and Mohammad Masdari. "Using cloud computing for e-government: challenges and benefits". In: International Journal of Computer, Information, Systems and Control Engineering 7.9 (2013), pp. 596–603.

[5] Rama Krushna Das, Sachidananda Patnaik, and Ajita Kumar Misro. "Adoption of Cloud Computing in e-Governance". In: (2011). Ed. by Natarajan Meghanathan, Brajesh Kumar Kaushik, and Dhinaharan Nagamalai, pp. 161–172. doi: 10.1007/978-3-642-17881-8\_16. url: https: //doi.org/10.1007/978-3-642-17881-8\_16.

[6] R. H. Di et al. "Research on the impact of cloud computing trend on Egovernment framework". In: 2011 International Conference on E-Business and E-Government (ICEE). 2011, pp. 1–4. doi: 10.1109/ICEBEG.2011. 5886913.

[7] D. G. Chandra and R. S. Bhadoria. "Cloud Computing Model for National E-governance Plan (NeGP)". In: 2012 Fourth International Conference on Computational Intelligence and Communication Networks. 2012, pp. 520–524. doi: 10.1109/CICN.2012.61.

### Reference(Cont'd):

[8] D. G. Chandra and R. S. Bhadoria. "Cloud Computing Model for National E-governance Plan (NeGP)". In: 2012 Fourth International Conference on Computational Intelligence and Communication Networks. 2012, pp. 520–524. doi: 10.1109/CICN.2012.61.

[9] Wojciech Cellary and Sergiusz Strykowski. "E-government based on cloud computing and service-oriented architecture". In: Proceedings of the 3rd international conference on Theory and practice of electronic governance. ACM. 2009, pp. 5–10.

[10] Jason H Christensen. "Using RESTful web-services and cloud computing to create next generation mobile applications". In: Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages and applications. ACM. 2009, pp. 627–634.

[11] L. Li and W. Chou. "Design and Describe REST API without Violating REST: A Petri Net Based Approach". In: 2011 IEEE International Conference on Web Services. 2011, pp. 508–515. doi: 10.1109/ICWS.2011. 54.

[12] L. Richardson and S. Ruby. RESTful Web Services. O'Reilly Media, 2008. isbn: 9780596554606. url: https://books.google.com.bd/books?id= XUaErakHsoAC.

[13] Amazon Web Services (AWS) - Cloud Computing Services. https://aws.amazon.com/. (Accessed on 09/03/2017).

[14] JSON Web Token (JWT). Date and time format - ISO 8601. https : //tools.ietf.org/html/rfc7519. (Accessed on 02/05/2017).

[15] Amazon Rekognition. https://aws.amazon.com/rekognition/. (Accessed on 05/07/2017).

# Reference(Cont'd):

[16] The Python SQL Toolkit and Object Relational Mapper. https://www.sqlalchemy.org/. (Accessed on 05/07/2017).

[17] Amazon Elastic Load Balancing. https://aws.amazon.com/elasticloadbalancing/. (Accessed on 03/02/2017).

[18] Amazon Cloudwatch. https://aws.amazon.com/cloudwatch/. (Accessed on 04/04/2017).

[19] Color FERET Database. https://www.nist.gov/itl/iad/image-group/color-feret-database. (Accessed on 03/03/2017).

[20] S. Narula, A. Jain, and Prachi. "Cloud Computing Security: Amazon Web Service". In: 2015 Fifth International Conference on Advanced Computing Communication Technologies. 2015, pp. 501–505. doi: 10.1109/ACCT. 2015.20.

[21] Haibin Ling et al. "Face verification across age progression using discriminative methods". In: IEEE Transactions on Information Forensics and security 5.1 (2010), pp. 82–91.

[22] Unsang Park, Yiying Tong, and Anil K Jain. "Age-invariant face recognition". In: IEEE transactions on pattern analysis and machine intelligence 32.5 (2010), pp. 947–954.

[23] KK Smitha, Tony Thomas, and K Chitharanjan. "Cloud based e-governance system: A survey". In: Procedia Engineering 38 (2012), pp. 3816–3823.

[24] Erik Wilde and Cesare Pautasso. REST: from research to practice. Springer Science & Business Media, 2011.

[25] Anil K Jain and Stan Z Li. Handbook of face recognition. Springer, 2011.

#### Acknowledgments:

- Dr. Md. Whaiduzzaman, Associate Professor, IIT, JU.
- K M Akkas Ali, Director, IIT, JU.
- Jesmin Akhter, Associate Professor, IIT, JU.
- Dr. Mohammad Abu Yousuf, Associate Professor, IIT, JU.
- Dr. Mohammad Shahidul Islam, Assistant Professor, IIT, JU.
- Ministry of Science and Technology.