
Graph
Algorithms
Ahmedur Rahman Shovon

PhD (Student), CS

UAB

Graph in Mathematics or in normal use

2

What about graph in Algorithm?

3

Components of a graph
▪ Vertices / Nodes:

▪ Represented as set of vertices

V = {P, Q, R, S}

▪ Edges:

▪ Represented as set of connection between vertices

E = {{P, Q}, {Q, S}, {SR}}

▪ Graph:

▪ Represented as the combination of vertices and edges

G = (V, E)

R

S

Q

P

4

Types of Graphs

5

V = {s, v, t, w}
E = {{s, v}, {v, t}, {t, w}, {v, w}, {w, s}}

E contains Unsorted order of vertices

V = {s, v, t, w}
E = {(s, v), (s, w), (v, w), (v, t), (w, t)}

E contains Sorted order of vertices

Weighted Graph
▪ Directed and undirected graph can

have weight between vertices

▪ The weight is also known as

distance

6

Applications of Graph

▪ Road networks, navigation

▪ The World Wide Web

▪ Social Networks

▪ Puzzle solving

Notation for Graphs
▪ For a graph G = (V, E) with vertex

set V and edge set E:

▪ n = |V| denotes the number of

vertices.

▪ m = |E| denotes the number of

edges.

▪ In the figure,

▪ n = number of vertices = 4

▪ m = number of edges = 5

Minimum & Maximum
number of Edges
▪ Assume the following properties:

1. The graph is undirected

2. The graph is connected

3. There are no parallel edges

between vertices

Quick Quiz
▪ For an undirected connected graph with n vertices and no parallel edge, what are the

minimum and maximum numbers of edges?

a) Minimum number of edges = n – 1, maximum number of edges = (n * (n - 1)) / 2

b) Minimum number of edges = n – 1, maximum number of edges = n2

c) Minimum number of edges = n, maximum number of edges = 2n

d) Minimum number of edges = n – 1, maximum number of edges = nn

Quiz Solution
▪ For an undirected connected graph with n vertices and no parallel edge, what are

the minimum and maximum numbers of edges?

a) Minimum number of edges = n – 1, maximum number of edges = (n * (n - 1)) / 2

▪ A connected graph with the minimum number of edges (n-1 edges) is called a Tree.

▪ A connected graph with maximum number of edges ((n * (n - 1)) / 2 edges) is

known as Complete Graph

Sparse and Dense Graphs
▪ A graph is Sparse if the number of edges is relatively close to linear in the number of

vertices.

▪ | E | ≅ n

▪ A graph is Dense if the number of edges is relatively close to quadratic in the number

of vertices.

▪ | E | ≅ n2

▪ Graph representation may vary for Sparse and Dense graphs

In-degree and out-
degree
▪ In a directed graph,

▪ The in-degree of a vertex is the
total number of incoming edges

▪ The out-degree of a vertex is the
total number of outgoing edges

▪ In an undirected graph,

▪ The degree of a vertex is the
total number of adjacent nodes

▪ The sum of degrees of all nodes
is the double of number of
edges of the graph

0/2 2/1 0/2

2/1 2/1 2/1

Graph
Representation

▪ Two standard ways to represent a

graph G = (V, E) are:

a) Adjacency-list representation

b) Adjacency-matrix representation

Graph G = (V, E)

Adjacency-list
representation of G

Adjacency-matrix
representation of G

Adjacency-list
representation

▪ Adjacency-list representation of
graph G = (V, E) consists of:

a) An array for each vertex,
Adj of |V|

b) Each array index consists of a list
of vertices which are connected
to the vertex,
Adj[u] contains the list of vertices
which are connected to vertex u

▪ Suitable for Sparse graphs

Adjacency-list for undirected graph

Adjacency-list for directed graph

Adjacency-list
space requirement

▪ Given a graph G with n vertices

and m edges.

What is the space

requirement of adjacency-list

representation of graph G?

a) Θ(n)

b) Θ(m)

c) Θ(n + m)

d) Θ(n2)

Adjacency-list for undirected graph

Adjacency-list for directed graphSpace requirements Θ(n + m)

Adjacency-matrix
representation

▪ Adjacency-matrix representation

of graph G = (V, E), n = |v| consists

of:

a) A square matrix A of size n × n

b) Each entry Aij is defined as:

Aij = 1, if edge(i, j) ∈ E

Aij = 0, otherwise

▪ Suitable for Dense graphs

Adjacency-matrix for undirected graph

Adjacency-matrix for directed graph

Adjacency-matrix
space requirement

▪ Given a graph G
with n vertices and m edges.
What is the space requirement
of adjacency-matrix
representation of graph G?

a) Θ(n)

b) Θ(m)

c) Θ(n + m)

d) Θ(n2)

Adjacency-matrix for undirected graph

Adjacency-matrix for directed graphSpace requirements Θ(n2)

Comparing the
representations

▪ For Sparse graphs (| E | ≅ n)

adjacency-list representation

takes less space

▪ For Dense graphs (| E | ≅ n2)

adjacency-matrix representation

is faster

▪ The representation should be

selected based on the requirement

Graph G = (V, E)

Adjacency-list
representation of G

Adjacency-matrix
representation of G

Graph Search
▪ For a graph G = (V, E) with vertex

set V and edge set E, graph search

refers to the process of

visiting each vertex in a graph

▪ Traversals are classified by the

order in which the vertices are

visited

▪ Also known as Graph Traversal

Applications of Graph Search

▪ Checking connectivity

▪ Shortest paths

▪ Planning

▪ Connected components

Breadth-first Search
▪ Breadth-first search (BFS) is one of the simplest

algorithms for graph traversal

▪ BFS calculates the shortest path between two nodes

▪ For a given graph, G = (V, E) and a source vertex s ∈ V
BFS explores the edges of G to discover every vertex
that is reachable from s

▪ BFS works on both directed and undirected graphs

▪ It expands the frontier between discovered and
undiscovered vertices uniformly across the breadth of
the frontier, so it is called Breadth-first search

▪ It discovers all vertices at distance k from s before
discovering any vertices at distance k + 1

BFS Algorithm
▪ Initially each of the vertex is configured as:

▪ Color to WHITE

▪ depth to infinity

▪ parent as NIL

▪ A queue is used to keep track of the traversal

▪ If a vertex with WHITE color is discovered, it painted
GRAY and added to the queue

▪ If a vertex completes traversal, it painted BLACK

▪ The traversal continues until the queue is empty

▪ Running time: O(V + E)

▪ BFS ensures to visit each node once only

Challenge Solving
Session Live
1. Challenge: https://practice.geeksforg

eeks.org/problems/bfs-traversal-of-

graph/1

2. Solution: https://gist.github.com/arsh

o/5a0e8670b328909b22b94069e157d

e5d

https://practice.geeksforgeeks.org/problems/bfs-traversal-of-graph/1
https://gist.github.com/arsho/5a0e8670b328909b22b94069e157de5d

References
1. Rivest, R. L., Leiserson, C. E., Stein, C., Cormen, T. H. (2009). Introduction to

Algorithms. United Kingdom: MIT Press.

2. Roughgarden, T. (2018). Algorithms Illuminated: Graph algorithms and data

structures. Part 2. United States: Soundlikeyourself Publishing LLC.

THANK YOU

