Graph Algorithms

Ahmedur Rahman Shovon PhD (Student), CS UAB

Graph in Mathematics or in normal use

What about graph in Algorithm?

Components of a graph

- Vertices / Nodes:
- Represented as set of vertices

$$
V=\{P, Q, R, S\}
$$

- Edges:
- Represented as set of connection between vertices
$E=\{\{P, Q\},\{Q, S\},\{S R\}\}$
- Graph:
- Represented as the combination of vertices and edges

$$
G=(V, E)
$$

Types of Graphs

(a) An undirected graph
$V=\{s, v, t, w\}$
$E=\{\{s, v\},\{v, t\},\{t, w\},\{v, w\},\{w, s\}\}$
E contains Unsorted order of vertices

(b) A directed graph

$$
\begin{aligned}
& V=\{s, v, t, w\} \\
& E=\{(s, v),(s, w),(v, w),(v, t),(w, t)\}
\end{aligned}
$$

E contains Sorted order of vertices

Weighted Graph

- Directed and undirected graph can have weight between vertices
- The weight is also known as distance

- Road networks, navigation
- The World Wide Web
- Social Networks
- Puzzle solving

Notation for Graphs

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with vertex set V and edge set E :
- $n=|V|$ denotes the number of vertices.
- $m=|E|$ denotes the number of edges.
- In the figure,
- n = number of vertices $=4$
- $m=n u m b e r$ of edges $=5$

Minimum \& Maximum number of Edges

- Assume the following properties:

1. The graph is undirected
2. The graph is connected
3. There are no parallel edges between vertices

Quick Quiz

- For an undirected connected graph with n vertices and no parallel edge, what are the minimum and maximum numbers of edges?
a) Minimum number of edges $=n-1$, maximum number of edges $=\left(n^{*}(n-1)\right) / 2$
b) Minimum number of edges $=n-1$, maximum number of edges $=n^{2}$
c) Minimum number of edges $=n$, , aximum number of edges $=2^{n}$
d) Minimum number of edges $=n-1$, maximum number of edges $=n^{n}$

Quiz Solution

- For an undirected connected graph with n vertices and no parallel edge, what are the minimum and maximum numbers of edges?
a) Minimum number of edges $=n-1$, maximum number of edges $=\left(n^{*}(n-1)\right) / 2$
- A connected graph with the minimum number of edges ($\mathrm{n}-1$ edges) is called a Tree.
- A connected graph with maximum number of edges ((n * $(n-1)) / 2$ edges) is known as Complete Graph

Sparse and Dense Graphs

- A graph is Sparse if the number of edges is relatively close to linear in the number of vertices.
- $|E| \cong n$
* A graph is Dense if the number of edges is relatively close to quadratic in the number of vertices.
- $|E| \cong n^{2}$
- Graph representation may vary for Sparse and Dense graphs

In-degree and outdegree

- In a directed graph,
- The in-degree of a vertex is the total number of incoming edges
- The out-degree of a vertex is the total number of outgoing edges
- In an undirected graph,
- The degree of a vertex is the total number of adjacent nodes

- The sum of degrees of all nodes is the double of number of edges of the graph

Graph
 Representation

- Two standard ways to represent a graph $G=(V, E)$ are:
a) Adjacency-list representation
b) Adjacency-matrix representation

Graph G = (V, E)

Adjacency-list representation of G

Adjacency-matrix representation of G

Adjacency-list representation

- Adjacency-list representation of graph $G=(V, E)$ consists of:
a) An array for each vertex, Adj of IVI
b) Each array index consists of a list of vertices which are connected to the vertex, Adj[u] contains the list of vertices which are connected to vertex u
- Suitable for Sparse graphs

Adjacency-list for undirected graph

Adjacency-list for directed graph

Adjacency-list space requirement

- Given a graph G with n vertices and m edges.
What is the space
requirement of adjacency-list representation of graph G ?
a) $\theta(n)$
b) $\theta(m)$
c) $\theta(n+m)$
d) $\theta\left(n^{2}\right)$

Adjacency-list for undirected graph

Adjacency-list for directed graph

Adjacency-matrix representation

- Adjacency-matrix representation of graph $G=(V, E), n=|v|$ consists of:
a) A square matrix A of size $n \times n$
b) Each entry $A_{i j}$ is defined as:
$A_{i j}=1$, if edge($\left.i, j\right) \in E$
$A_{i j}=0$, otherwise
- Suitable for Dense graphs

1	1	2	3	4	5
	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency-matrix for undirected graph

Adjacency-matrix for directed graph

Adjacency-matrix space requirement

- Given a graph G with n vertices and m edges. What is the space requirement of adjacency-matrix representation of graph G?
a) $\theta(n)$
b) $\theta(m)$
c) $\theta(n+m)$
d) $\theta\left(n^{2}\right)$

Adjacency-matrix for undirected graph

Comparing the representations

- For Sparse graphs (|E|n) adjacency-list representation takes less space
- For Dense graphs (|E| $\cong n^{2}$) adjacency-matrix representation is faster
- The representation should be selected based on the requirement

Graph G = (V, E)

Adjacency-list representation of G

Adjacency-matrix representation of G

Graph Search

- For a graph $G=(\mathrm{V}, \mathrm{E})$ with vertex set V and edge set E, graph search refers to the process of visiting each vertex in a graph
- Traversals are classified by the order in which the vertices are visited
- Also known as Graph Traversal

Applications of Graph Search

- Checking connectivity
- Shortest paths
- Planning
- Connected components

Breadth-first Search

- Breadth-first search (BFS) is one of the simplest algorithms for graph traversal
- BFS calculates the shortest path between two nodes
- For a given graph, $G=(V, E)$ and a source vertex $s \in V$ BFS explores the edges of G to discover every vertex that is reachable from s
- BFS works on both directed and undirected graphs
- It expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier, so it is called Breadth-first search

- It discovers all vertices at distance k from s before discovering any vertices at distance $k+1$

$\operatorname{BFS}(G, s)$

BFS Algorithm

- Initially each of the vertex is configured as:
- Color to WHITE
- depth to infinity
- parent as NIL
- A queue is used to keep track of the traversal
- If a vertex with WHITE color is discovered, it painted GRAY and added to the queue
- If a vertex completes traversal, it painted BLACK

14

- The traversal continues until the queue is empty
- Running time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$
- BFS ensures to visit each node once only

$$
\begin{aligned}
& \text { for each vertex } u \in G . V-\{s\} \\
& \text { u.color }=\text { WHITE } \\
& \text { u. } d=\infty \\
& u . \pi=\mathrm{NIL} \\
& \text { s.color }=\text { GRAY } \\
& \text { s. } d=0 \\
& s . \pi=\text { NIL } \\
& Q=\emptyset \\
& \text { Enqueue }(Q, s) \\
& \text { while } Q \neq \emptyset \\
& u=\operatorname{Dequeve}(Q) \\
& \text { for each } v \in \operatorname{G.Adj}[u] \\
& \text { if } v \text {. color }==\text { WHITE } \\
& \text { v.color }=\text { GRAY } \\
& \text { v. } d=u . d+1 \\
& \text { v. } \pi=u \\
& \text { EnQueue }(Q, v) \\
& \text { u.color }=\text { BLACK }
\end{aligned}
$$

Challenge Solving Session Live

1. Challenge: https://practice.geeksforg eeks.org/problems/bfs-traversal-ofgraph/1
2. Solution: https://gist.github.com/arsh o/5a0e8670b328909b22b94069e157d e5d

References

1. Rivest, R. L., Leiserson, C. E., Stein, C., Cormen, T. H. (2009). Introduction to Algorithms. United Kingdom: MIT Press.
2. Roughgarden, T. (2018). Algorithms Illuminated: Graph algorithms and data structures. Part 2. United States: Soundlikeyourself Publishing LLC.

THANK YOU

