
GPU Join
Team Members 

Ahmedur Rahman Shovon
Landon Dyken

Sidharth Kumar
(University of Alabama at Birmingham)

Mentors
Thomas Applencourt, ANL

Oded Green, NVIDIA



GPUJoin

• Declarative logical inference at scale

• Scientific driver for the chosen algorithm
– Graph mining
– program analysis
– deductive databases

• What’s the algorithmic motif?
– Implement relational algebra (RA) backend to support 

declarative analysis

• What parts are you focusing on? 
– Getting a prototype implementation of RA 





Pipeline of our work



Evolution and Strategy

• What was your goal coming here?
– Goal was too ambitious, but we were able to 

realign after suggestion from our mentors
– We wanted to develop multi-GPU multi-node 

implementation of relational algebra backend

• What was your initial strategy?
– To implement optimized join algorithms for 

single GPU in CUDA, then utilize this for MPI + 
CUDA in the distributed relational algebra system



Evolution and Strategy

• How did this strategy change?
– We realized we were not knowledgeable enough 

of GPU programming yet to create our own very 
fast join implementations from scratch in CUDA

– Our mentors set us up with tools/libraries which 
provided optimized abstractions (Rapids CuDF, 
HashGraph, CuCollections)

– We finished making a python prototype of 
transitive closure that utilizes rapids for fast 
iterated GPU joins



Evolution and Strategy

• Where are you heading towards?
– We were linked an NVIDIA course (Fundamentals 

of Accelerated Computing with CUDA C/C++) that 
we completed to improve our CUDA and GPU 
programming skills

– Although rapids has good performance, we want 
to create our own CUDA backend for an MPI + 
CUDA prototype using CUDA aware MPI so that 
we can optimize by combining operations specific 
to our purpose

– Before this though, want to create a dask-cudf 
baseline for multi-gpu joins



Results and Final Profile

• What were you able to accomplish?
• Created rapids TC prototype run on Theta
• Optimized CUDA nested loop join operation on Theta

● What did you learn?
– Many GPU programming best practices i.e. preventing 

branch diversion, utilizing multiple compute passes to 
improve parallelism, and reducing page faults

– Gained knowledge of many technologies for multi-node 
multi-gpu join implementation in the future (NVSHMEM, 
HashGraph and CuCollections for optimized CUDA 
backend, etc.)



Benchmarks on Theta GPU (NVIDIA A100 - 40536MiB)

Nested loop join (non atomic) Nested loop join (atomic)

Join using CUDF and Pandas



Benchmarks on Theta GPU (NVIDIA A100 - 40536MiB)

Different number of threads and blocks configuration for nested loop join

Transitive closure calculation for string graph datasets



What problems you encountered

• Did not have a unified development 
environment
– Some using Windows, linux, older gaming GPUs 

to run code
– Difficult to get libraries to work in each 

environment
– Started taking increased advantage of Theta 

interactive jobs!

• Creating working conda environment on Theta 



Wishlist

• What do you wish existed to make your life 
easier?
– Documentation on running Conda on theta

– Improved documentation for technologies we 
used (CuDF->dask-cudf in particular)



Was it worth it?

• Was this worth it?
• YES
• The DLI course with hands on was very helpful
• We applied the error handling, prefetching, 

unified memory, and different configurations to 
get better performance

• Will you continue development?
– We will develop CUDA aware MPI for our Datalog 

backend 
– We will implement multi GPU TC versions using Rapids 

dask-cudf


