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Accelerating Iterative Joins Toward a Modern Datalog Backend on GPU
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We introduce a GPU-optimized open addressing hash table tailored for 
relational data to perform binary hash joins.

Accelerating Iterative Joins with GPUJoin Experiments

Challenges

Background
Declarative programming focuses on “WHAT” to achieve rather than “HOW”.

Efficiently mapping iterative join operations to GPUs poses unique challenges:

We evaluated GPUJoin on large datasets with state-of-the-art CPU Datalog 
solver (Soufflé) and GPU library (cuDF).

Experiments (Continue)

Conclusion

Our contributions:
• High performance GPU hash table for iterative RA
• Operations optimization (fuse join and projection)
• Overcome deduplication challenge
• Efficient GPU memory management (pinned memory and buffer clearance)
• Semi-naïve evaluation for avoiding redundant computation
• Open-sourced code, data, documentation: 

https://github.com/harp-lab/usenixATC23 
(Published in USENIX ATC 2023, IA^3 2022) 

UserID UserName UserEmail Country

101 Alice alice@example.com USA

102 Bob bob@example.com USA

103 Eve eve@example.com Canada

Users

SELECT UserID FROM Users WHERE Country=‘USA’;WHAT HOW

Advanced approach: Logic programming (Datalog)

Datalog rules to compute Transitive Closure (TC) of a relation

Accelerating the iterative joins is crucial 
as it is the most expensive operation in Datalog rule evaluation

Operationalized as a fixed-point iteration using FG

Datalog rules compiled down to relational algebra operators 
(Union, Projection, Rename, Join)

TC(x, y) :- Edge(x, y).
TC(x, z) :- TC(x, y), Edge(y, z).
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Storing intermediate results2

Fusing multiple operations3 Redundant computations4

Duplicates on join results1
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We present a single GPU-based open addressing hash join (GPUJoin) 
designed to accelerate iterative joins for Datalog evaluation:

Iterations in Transitive Closure (TC) Computation
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Relational operations in a fixed-point setting (Iteration 1)
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Collision resolution:
Linear probing

Performing Hash Join on GPU

Transitive closure computation (naïve vs semi-naïve evaluation)

Transitive closure computation single iteration (semi-naïve evaluation)

T=∅
Loop
  Tnew=E(x,y)∪Πx,y(E(x,z)⋈T(z,y))
  If Tnew=T:
    then break
  EndIf
  T=Tnew
EndLoop

T=∅, ΔT=E
Loop
  ΔT(x,y)=Πx,y(E(x,z)⋈ΔT(z,y))
  If ΔT=∅:
    then break
  EndIf
  T=T∪ΔT
EndLoop

Hash Table ΔT
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Avoid redundant computations4

Fused join and projection3

Efficient deduplication1

Pinned memory, clear buffers2
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GPUJoin lays the groundwork for a modern Datalog backend on GPU, 
specifically tailored to iterative relational algebra.

Dataframe: 2D labeled tabular data structure

CPU
GPU

(cuDF)

ThetaGPU supercomputer from Argonne National Lab

CPU: AMD EPYC 7742 processors with 3.31GHz clock speed, 128 cores

GPU: NVIDIA A100 Tensor Core GPU with 40GB GPU memory, 108 SM 

Environment: CUDA (11.4, 3456x512), Soufflé (2.3, 128 threads), cuDF (22.06)

Datasets: Stanford large network, SuiteSparse, Road network datasets

Experiment platform and datasets

Our GPU Hash Table performance

Build rate:

✓ Random synthetic graph: 400 million keys/second

✓ String graph: 4 billion keys/second

Fuse 
operations

Thread-block 
configuration

Memory 
management

Optimize data 
structure

CUDA advantages over DataFrame

Off-the-shelf DataFrame data structure for Iterative Relational Algebra

Transitive closure performance comparison (GPUJoin vs Soufflé vs cuDF)

Single join performance comparison (GPUJoin vs cuDF)

Pinned vs unified memory performance comparison for iterative joins (TC)

Dataset Type Rows TC size Iterations GPUJoin(s) Soufflé(s) cuDF(s)

fe_ocean U 409,593 1,669,750,513 247 138.237 536.233 Out of Memory

p2p-Gnutella31 D 147,892 884,179,859 31 Out of Memory 128.917 Out of memory

usroads U 165,435 871,365,688 606 364.554 222.761 Out of Memory

fe_body U 163,734 156,120,489 188 47.758 29.07 Out of Memory

loc-Brightkite U 214,078 138,269,412 24 15.88 29.184 Out of Memory

SF.cedge U 223,001 80,498,014 287 11.274 17.073 64.417
fe_sphere U 49,152 78,557,912 188 13.159 20.008 80.077
CA-HepTh D 51,971 74,619,885 18 4.318 15.206 26.115

p2p-Gnutella04 D 39,994 47,059,527 26 2.092 7.537 14.005

p2p-Gnutella09 D 26,013 21,402,960 20 0.72 3.094 3.906

wiki-Vote D 103,689 11,947,132 10 1.137 3.172 6.841
cti U 48,232 6,859,653 53 0.295 1.496 3.181

delaunay_n16 U 196,575 6,137,959 101 1.137 1.612 5.596

luxembourg_osm U 119,666 5,022,084 426 1.322 2.548 8.194

ego-Facebook U 88,234 2,508,102 17 0.544 0.606 3.719
cal.cedge U 21,693 501,755 195 0.489 0.455 2.756
TG.cedge U 23,874 481,121 58 0.198 0.219 0.857

wing U 121,544 329,438 11 0.085 0.193 0.905
OL.cedge U 7,035 146,120 64 0.148 0.181 0.523

Naïve vs semi-naïve evaluation of TC computation in GPUJoin

Empty bars in naïve evaluation presents out of memory error
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Abstract memory management

Abstract thread block configuration

Same API signatures for CPU, GPU

Easy-to-code interface

Advantages

No fusing

Memory + computation overhead

No consecutive operation

Memory limitation

Limitations

DataFrame based Datalog applications

GPU Hash Table (Open addressing, linear probing)
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