
Accelerating iterative
relational algebra
operations

oneAPI Hackathon: CUDA to SYCL
Migration

0 9 / 1 2 / 2 0 2 3

2

Team Members

Thomas GilrayAhmedur Rahman Shovon Sidharth Kumar

Ph.D. Student (CS)

University of Illinois Chicago

Email: ashov@uic.edu

Assistant Professor (CS)

University of Alabama at Birmingham

Email: gilray@uab.edu

Assistant Professor (CS)

University of Illinois Chicago

Email: sidharth@uic.edu

3

Inspiration

• Iterative relational algebra (RA kernels in a

fixed-point loop) enables bottom-up logic

programming languages such as Datalog

which can be implemented using relational

algebra primitives (e.g., projections,

reorderings, and joins)

• While much has explored standalone RA

operations on the GPU, relatively less work

focuses on iterative RA, which exposes new

challenges (e.g., deduplication and memory

management)

4

Transitive Closure Computation using Iterative Relational
Algebra

5

What it does

• Developed a GPU-based hash-join

implementation, leveraging

• a novel open-addressing-based hash table

implementation

• operator fusing to optimize memory

access

• two variant implementations of

deduplication

• Implemented transitive closure using our

hash-join-based CUDA library and compared its

performance against cuDF (GPU-based) and

Souffle (CPU-based)

6

Environment and Datasets

• Benchmarked our experiments on the

ThetaGPU supercomputer of Argonne

National lab using a single nVidia A100 GPU

• CUDA kernel size: 3456 X 512

• CUDA version: 11.4

• Souffle version: 2.3 with 128 threads

• Datasets: Stanford large network dataset

collection, SuiteSparse matrix collection, and

road network real datasets collection

7

Challenges we ran into

• Unlike C++, CUDA lacks efficient data

structures, limiting our implementation's

capabilities

• The available VRAM of a single GPU imposes

constraints on our implementation's scalability

• Debugging kernel code posed significant

challenges, turning it into a nightmarish

experience

8

What we learned

• Efficient memory management is crucial for

successful CUDA implementations

• Handling the indeterministic result size per

iteration in Iterative RA operations requires

careful consideration

• While low-level GPU code allows optimization

opportunities, it demands considerable time

and effort compared to using off-the-shelf

libraries like cuDF

9

Accomplishments

• Our hash-join-based transitive closure

computation shows favorable results against

both cuDF and Souffle, with gains up to 10.8x

against cuDF and 3.9x against Souffle

10

Publications

• Shovon, A. R., Gilray, T., Micinski, K., &

Kumar, S. (2023). Towards Iterative Relational

Algebra on the {GPU}. In 2023 USENIX

Annual Technical Conference (USENIX ATC

23) (pp. 1009-1016).

• Shovon, A. R., Dyken, L. R., Green, O.,

Gilray, T., & Kumar, S. (2022, November).

Accelerating Datalog applications with cuDF.

In 2022 IEEE/ACM Workshop on Irregular

Applications: Architectures and Algorithms

(IA3) (pp. 41-45). IEEE.

11

Project Repository

• Transitive closure computation using CUDA:

https://github.com/harp-lab/usenixatc23

• Transitive closure computation using

SYCL: https://github.com/arsho/tc

https://github.com/harp-lab/usenixatc23
https://github.com/arsho/tc

12

Porting TC computation CUDA implementation

Clean CUDA ProjectClean

Install SYCLomaticInstall

Convert CUDA code to SYCLConvert

Check the SYCL code and modify if necessaryCheck

Run in Intel Dev CloudExecute

13

Clean CUDA Project

• Our CUDA code has multiple files and a

Makefile that has auxilary commands

• To port the CUDA project to SYCL first we

cleaned the CUDA project

• We made one file that has CUDA code,

simplified the Makefile, and kept one test

dataset

• The folder sycl_implementation has the single

cuda file

14

Install SYCLomatic

• Open a terminal and download SYCLomatic release:

cd ~/

mkdir syclomatic

cd syclomatic

wget https://github.com/oneapi-

src/SYCLomatic/releases/download/20230725/linux_release.tgz

tar -xvf linux_release.tgz

• Add the bin path to .zshrc:

export PATH="~/syclomatic/bin:$PATH"

• Check c2s version:

c2s --version

SYCLomatic release: https://github.com/oneapi-src/SYCLomatic/tags

15

Convert CUDA code to SYCL

• Convert the CUDA code to SYCL and create a directory to store the SYCL code:

intercept-build make

c2s -p compile_commands.json --out-root tc_sycl

• Copy sample dataset to the SYCL code directory and create a compressed file:

cp data_5.txt data_7035.txt tc_sycl

tar -cvf tc_sycl.tgz tc_sycl

SYCLomatic doc: https://github.com/oneapi-src/SYCLomatic

16

Check SYCL Converted Code

• We had error in converted SYCL code using SYCLomatic 20230725 release. In converted

SYCL code, we needed to replace std::reducet to std::reduce

• This error did not appear when we used SYCLomatic 20230830 release

• While converting Thrust's exclusive scan API, the SYCLomatic code was generating errors

which was resolved by removing (decltype(offset)::value_type) from the following line:

std::exclusive_scan(oneapi::dpl::execution::make_device_policy(q_ct1), offset, offset +

t_delta_rows, offset, 0);

• For operator function, we needed to add const in the signature:

bool operator()(const Entity &lhs, const Entity &rhs) const

SYCLomatic doc: https://github.com/oneapi-src/SYCLomatic

17

Execute in Intel Dev Cloud

• Upload the SYCL code folder to Intel Dev Cloud:

scp tc_sycl.tgz idc:~/

• Connect to Intel Dev Cloud, start an interactive session, load the modules:

ssh idc

srun --pty bash

source /opt/intel/oneapi/setvars.sh

• Execute the SYCL code:

tar -xvf tc_sycl.tgz

cd tc_sycl

icpx -fsycl *.cpp

Intel Dev Cloud instances: https://scheduler.cloud.intel.com/#/systems

18

Result comparison: CUDA and SYCL

CUDA results SYCLomatic generated SYCL results

1919

Status

• We ported the CUDA transitive closure
computation code to SYCL using SYCLomatic

• We needed to manually change some of the
converted code to resolve compilation error

• The SYCL results are correct for small datasets
but incorrect for larger ones

• As SYCL supports many standard data
structures, we decided to implement SYCL
implementation from scratch removing the
overheads of Thrust APIS

2020

Future Direction

• Implement transitive closure computation using

SYCL from scratch

• Compare the TC computation with CUDA, cuDF,

and Souffle on single GPU

• Extend the computation to use multiGPU

environment on intel GPU targeting the Aurora

supercomputer

21

Feedback

• Examples on dynamic data

structure implementations using

SYCL would be helpful

• Automated generation of additional

comments on ported code can

explain the converted code

22

Thank You

	Slide 1: Accelerating iterative relational algebra operations
	Slide 2: Team Members
	Slide 3: Inspiration
	Slide 4: Transitive Closure Computation using Iterative Relational Algebra
	Slide 5: What it does
	Slide 6: Environment and Datasets
	Slide 7: Challenges we ran into
	Slide 8: What we learned
	Slide 9: Accomplishments
	Slide 10: Publications
	Slide 11: Project Repository
	Slide 12: Porting TC computation CUDA implementation
	Slide 13: Clean CUDA Project
	Slide 14: Install SYCLomatic
	Slide 15: Convert CUDA code to SYCL
	Slide 16: Check SYCL Converted Code
	Slide 17: Execute in Intel Dev Cloud
	Slide 18: Result comparison: CUDA and SYCL
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Thank You

