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Inspiration

• Iterative relational algebra (RA kernels in a 

fixed-point loop) enables bottom-up logic 

programming languages such as Datalog 

which can be implemented using relational 

algebra primitives (e.g., projections, 

reorderings, and joins)

• While much has explored standalone RA 

operations on the GPU, relatively less work 

focuses on iterative RA, which exposes new 

challenges (e.g., deduplication and memory 

management)
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Transitive Closure Computation using Iterative Relational 
Algebra
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What it does

• Developed a GPU-based hash-join 

implementation, leveraging

• a novel open-addressing-based hash table 

implementation

• operator fusing to optimize memory 

access

• two variant implementations of 

deduplication

• Implemented transitive closure using our 

hash-join-based CUDA library and compared its 

performance against cuDF (GPU-based) and 

Souffle (CPU-based)
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Environment and Datasets

• Benchmarked our experiments on the 

ThetaGPU supercomputer of Argonne 

National lab using a single nVidia A100 GPU

• CUDA kernel size: 3456 X 512

• CUDA version: 11.4

• Souffle version: 2.3 with 128 threads

• Datasets: Stanford large network dataset 

collection, SuiteSparse matrix collection, and 

road network real datasets collection
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Challenges we ran into

• Unlike C++, CUDA lacks efficient data 

structures, limiting our implementation's 

capabilities

• The available VRAM of a single GPU imposes 

constraints on our implementation's scalability

• Debugging kernel code posed significant 

challenges, turning it into a nightmarish 

experience
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What we learned

• Efficient memory management is crucial for 

successful CUDA implementations

• Handling the indeterministic result size per 

iteration in Iterative RA operations requires 

careful consideration

• While low-level GPU code allows optimization 

opportunities, it demands considerable time 

and effort compared to using off-the-shelf 

libraries like cuDF
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Accomplishments

• Our hash-join-based transitive closure 

computation shows favorable results against 

both cuDF and Souffle, with gains up to 10.8x 

against cuDF and 3.9x against Souffle
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Publications

• Shovon, A. R., Gilray, T., Micinski, K., & 

Kumar, S. (2023). Towards Iterative Relational 

Algebra on the {GPU}. In 2023 USENIX 

Annual Technical Conference (USENIX ATC 

23) (pp. 1009-1016).

• Shovon, A. R., Dyken, L. R., Green, O., 

Gilray, T., & Kumar, S. (2022, November). 

Accelerating Datalog applications with cuDF. 

In 2022 IEEE/ACM Workshop on Irregular 

Applications: Architectures and Algorithms 

(IA3) (pp. 41-45). IEEE.
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Project Repository

• Transitive closure computation using CUDA: 

https://github.com/harp-lab/usenixatc23

• Transitive closure computation using 

SYCL: https://github.com/arsho/tc

https://github.com/harp-lab/usenixatc23
https://github.com/arsho/tc
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Porting TC computation CUDA implementation

Clean CUDA ProjectClean

Install SYCLomaticInstall

Convert CUDA code to SYCLConvert

Check the SYCL code and modify if necessaryCheck

Run in Intel Dev CloudExecute
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Clean CUDA Project

• Our CUDA code has multiple files and a 

Makefile that has auxilary commands

• To port the CUDA project to SYCL first we 

cleaned the CUDA project

• We made one file that has CUDA code, 

simplified the Makefile, and kept one test 

dataset

• The folder sycl_implementation has the single 

cuda file
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Install SYCLomatic

• Open a terminal and download SYCLomatic release:

cd ~/

mkdir syclomatic

cd syclomatic

wget https://github.com/oneapi-

src/SYCLomatic/releases/download/20230725/linux_release.tgz

tar -xvf linux_release.tgz

• Add the bin path to .zshrc:

export PATH="~/syclomatic/bin:$PATH"

• Check c2s version:

c2s --version

SYCLomatic release: https://github.com/oneapi-src/SYCLomatic/tags 
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Convert CUDA code to SYCL

• Convert the CUDA code to SYCL and create a directory to store the SYCL code:

intercept-build make

c2s -p compile_commands.json --out-root tc_sycl

• Copy sample dataset to the SYCL code directory and create a compressed file:

cp data_5.txt data_7035.txt tc_sycl

tar -cvf tc_sycl.tgz tc_sycl

SYCLomatic doc: https://github.com/oneapi-src/SYCLomatic
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Check SYCL Converted Code

• We had error in converted SYCL code using SYCLomatic 20230725 release. In converted 

SYCL code, we needed to replace std::reducet to std::reduce

• This error did not appear when we used SYCLomatic 20230830 release

• While converting Thrust's exclusive scan API, the SYCLomatic code was generating errors 

which was resolved by removing (decltype(offset)::value_type) from the following line:

std::exclusive_scan(oneapi::dpl::execution::make_device_policy(q_ct1), offset, offset + 

t_delta_rows, offset, 0);

• For operator function, we needed to add const in the signature:

bool operator()(const Entity &lhs, const Entity &rhs) const

SYCLomatic doc: https://github.com/oneapi-src/SYCLomatic
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Execute in Intel Dev Cloud

• Upload the SYCL code folder to Intel Dev Cloud:

scp tc_sycl.tgz idc:~/

• Connect to Intel Dev Cloud, start an interactive session, load the modules:

ssh idc

srun --pty bash

source /opt/intel/oneapi/setvars.sh

• Execute the SYCL code:

tar -xvf tc_sycl.tgz

cd tc_sycl

icpx -fsycl *.cpp

Intel Dev Cloud instances: https://scheduler.cloud.intel.com/#/systems
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Result comparison: CUDA and SYCL

CUDA results SYCLomatic generated SYCL results
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Status

• We ported the CUDA transitive closure 
computation code to SYCL using SYCLomatic

• We needed to manually change some of the 
converted code to resolve compilation error

• The SYCL results are correct for small datasets 
but incorrect for larger ones

• As SYCL supports many standard data 
structures, we decided to implement SYCL 
implementation from scratch removing the 
overheads of Thrust APIS
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Future Direction

• Implement transitive closure computation using 

SYCL from scratch

• Compare the TC computation with CUDA, cuDF, 

and Souffle on single GPU

• Extend the computation to use multiGPU 

environment on intel GPU targeting the Aurora 

supercomputer
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Feedback

• Examples on dynamic data 

structure implementations using 

SYCL would be helpful

• Automated generation of additional 

comments on ported code can 

explain the converted code
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Thank You
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