Message Broker System

Ahmedur Rahman Shovon
Codalo
shovon.sylhet@gmail.com

But I'll actually talk about RabbitMQ

BR300It

“Message broker translates a message from
the formal messaging protocol of the sender
to the formal messaging protocol of the
receiver.”

From Wikipedia, the free encyclopedia

RabbitMQ is open source message hroker
software that implements the Advanced
Message Queuing Protocol (AMQP).

The principal idea is pretty simple: it accepts
and forwards messages. You can think about
it as a post office: when you send mail to the
post box you're pretty sure that Mr. Postman
will eventually deliver the mail to your
recipient. Using this metaphor RabbitMQ is a
post box, a post office and a postman!

What can RabbitMQ do for you?

e Messaging enables software applications to connect and scale. Applications can
connect to each other. Messaging is asynchronous, decoupling applications by
separating sending and receiving data.

e Data delivery, non-blocking operations or push notifications, publish / subscribe,
asynchronous processing, or work queues.

e RabbitMQ is a messaging broker - an intermediary for messaging. It gives your
applications a common platform to send and receive messages, and your messages
a safe place to live until received.

Feature Highlights

Reliability

Flexible Routing

Clustering and Federation
Highly Available Queues
Multi-protocol with Many Clients
Plugin System

PRODUCER, QUEUE, CONSUMER

Remember these things please

A producer is a user application that sends messages.
A gueve is a buffer that stores messages.
A consumer is a user application that receives messages.

Now let’s see messaging in action!

1
The simplest thing that does something

2
Distributing tasks among workers

3
Sending messages to many consumers

at once

4

Receiving messages selectively
amgp.gen-59k...

Receiving messages based on a pattern
0l

type=topic *.orange*

* * rabhbit

6
Remote procedure call implementation
rpc_queue
) Request
Client reply_to=amp.genXaz... Server
correlation_id=abc

reply_to=amg.gen-Xaz2...

N —

Reply
correlation_id=abc

https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-six-python.html

What should | do to play with Rabbits?

Have a Windows machine? Start installing!

ERLANG 64 bit exe: otp_win64_19.1.exe

MS Visual C++ redistributable 2013 64 bit

RabbitMQ Server: rabbitmg-server-3.6.5.exe

RabbitMQ libraries based on the language

Python client recommended by the RabbitMQ team: Pika

Pika Installation: pip install pika

1 “Hello World!” - The simplest thing that does something

Our "Hello world” won't be too complex — let's send a message, receive it and print it
on the screen. To do so we need two programs: one that sends a message and one
that receives and prints it.

Sending message to queue Receiving message from queue

Sending message...

P d S . | & send.py - D:\pyPrac\rabbitmgq\\hello_world\send.py (3.5.2)
roaucer Crlpt File Edit Format Run Options Window Help

k Rabbit MQ Sender
Author: Shovon
Date: Hov 2016

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel ()
channel.gueue declare (gueuse="hsllo')
channel.basic publish (exchange = "'
routing key='hello',
body="Greetings from Codalo!'})
print ("[x] Sent A Message To Queus™)
connection.close ()

Message is sent to the

File Edit Shell Debug Options Window Help

q U e U e ==================== RESTLRT: D:‘pvPrac\rabbitmg'\send.py
[x] S5ent & Message To Queue

> I

Ln:13 Colk 4

Receiving message...

Li reciever.py - D\pyPrac\rabbitmagihello_world\reciever.py (3.5.2)

Consumer Scrlpt File Edit Format Run Options Window Help

l Rabbit MQ

connection = pika.BlockingConnection (pika.ConnectionParameters('localhost'))
channel = connection.channel ()
channel.gqueus_declare (guene="hesllo')
ief callback(ch, method, properties, body):
print ("[x] EReceiwved "+str(body))

channel .basic consume (callback, queue="hello',no ack=Tru:

print ("[*] Waiting for messages. To exit press CTRL4C™)

channel.start_consuming() _I
-

Ln: 1 Cok D

Message is received

Edit Shell Debug Options Window Help
From the q Ueue ================== RESTART: D:/pvPrac/rabbitmg/reciever.py

[*] Waiting for messages. To exit press CTRL+C

[x] Received b'Greetings from Codalo!'
1

Ln: 15 Cok 0

2 Work quElEsS - Distributing tasks among workers

The main idea behind Work Queues (aka: Task Queues) is to avoid doing a resource-
intensive task immediately and having to wait for it to complete. Instead we schedule
the task to be done later.

Sending message to queue Multiple consumers receiving message

Producer’s script (new_sender.py)

L‘i new_sender.py - D:\pyPrachrabbitmgiwork_gueues\new_sender.py (3.5.2)

Producer Script is now e Ed

Forrnat Run Options Window Help

updated to allow run time f Ranpic Mg Sendex(orkang gueses)

Date: Hov 2016

argument which contains

yve, pika
message '.Jjoin(sys.argv[l:]) or "Greetings from Codalo#'
messages connection = pika.BlockingConnection(pika.ConnectionParameters ('localhost'))

channel = connection.channel ()
channel .gueue declare (gqueue='task gueues', durable=True)
channel .basic publish (exchange = '',

routing key = 'task gueue',

body = message,

properties = pika.BasicProperties(delivery mode = 2,
print (' [x] Sent a message to gueus: Fr' % message)
connection.close ()

L1

Consumer’s / Worker’s script (worker.py)

Receiver Script is now
updated to allow pause to

process the queue element.

Lets think each consumer
as a worker. We ensure the
fair dispatch of queues
using prefetch_count=1
Each “#" in message takes
2 seconds to process.

L!il worker.py - D'\pyPracirabbitmgiwork_queues\worker.py (3.5.2)

File Edit Format Run Options Window Help

import pika, time

connection = pika.BlockingConnection(pika.ConnectionParameters('localho

channel = connection.channel ()
channel.gueue_declare (queue 1k ', durable = True)

print ("[*] Waiting for messages. To exit press CIRL+C™)

f callback(ch, method, properties, body):
| d "+str (bodv))

print (" [x
time.zlee
print (" [x] one™

ch.basic ack(delivery tag = method.delivery tag)

channel.basic_gos (prefetch count = 1)
channel.basic consume (callback, gueue='task gusus')
channel.start consuming ()

]

Ln: 1 Cok0

Sending messages...

e (Opentwocmdandrun
worker.py in both prompt.

e (Open another cmd and run
new_sender.py.

e The messages with lot of #
will take much time to
process in worker

Microsoft Windows [Version 18.8.14393] ~
(c) 2816 Microsoft Corporation. All rights reserved.

D:\pyPrac\rabbitmg\work_gueues»python new_sender.py "First Greeting Message Codalof
[#] Sent a message to queue: 'First Greeting Message Codalo#’
D:\pyPrac\rabbitmg\work_queues>python new_sender.py "Second Greeting Message Codalo
FRpEEEgsans”

[#] Sent a message to queue: 'Second Greeting Message Codalo####s#ssss’
D:\pyPrac\rabbitmg\work_queues>python new_sender.py "Third Greeting Message Codalof
?x] Sent a message to queue: 'Third Greeting Message Codalod##’
D:\pyPrac\rabbitmg\work_gueues>python new_sender.py "Fourth Greeting Message Codalo
?:] Sent a message to queue: 'Fourth Greeting Message Codalo##’
D:\pyPrac\rabbitmg\work queues»python new sender.py "Fifth Greeting Message Codalo#

[x] Sent a message to queue: 'Fifth Greeting Message Codalo#’

D:\pyPrac\rabbitmg\work gueues»

D:\pyPrac\rabbitmg\work_queues>python worker.py
Waiting for messages. To exit press CTRL+C
Received b'First Greeting Message Codalo#’
Done
Received b 'Third Greeting Message Codalo##’
Done
Received b'Fourth Greeting Message Codalo##’
Done
Received b'Fifth Greeting Message Codalo#’

Done

(c) 2816 Microsoft Corporation. All rights reserved.

D:\pyPrac\rabbitmg\work_queues>python worker.py
[*] Waiting for messages. To exit press CTRL+C

[®] Received b'Second Greeting Message Codalod

Real World Uses

e Fastlogging solution
e Sending emails
e Sending SMSs

e Background processing (data analysis)

Want to learn more?

e Go to the official site of RabbitMQ: https://www.rabbitmg.com/

e How about Wiki? : https://en.wikipedia.org/wiki/RabbitMQ

https://www.rabbitmq.com/
https://en.wikipedia.org/wiki/RabbitMQ

And pass the messages... :D

Thank you.

