GPU Join

Team Members

Ahmedur Rahman Shovon
Landon Dyken
Sidharth Kumar
(University of Alabama at Birmingham)

Mentors
Thomas Applencourt, ANL
Oded Green, NVIDIA



GPUJoin

Declarative logical inference at scale

Scientific driver for the chosen algorithm
-~ Graph mining
- program analysis
- deductive databases

What’s the algorithmic motif?

- Implement relational algebra (RA) backend to support
declarative analysis

What parts are you focusing on?
- Getting a prototype implementation of RA



Path finding: Logical Inference for Graphs

o — — —

NIOIWH =IO
WINIPIW =

RINOIOINIO(W(IR| O
AIRARWRWNPRAWE




Pipeline of our work

Datalog rule for computing transitive closure

Datalog | (x,y) o G(x,y) .
‘ T(x,z) <= T(x,¥), G(y,z).
Relational Algebra l

Operationalized as a fixed-point iteration using F

Fg(T) = GUII 2(pos1 (T) >y G)

Compute resources

CJCJC e -
CIJCICT »
CIJCICT oo

o

CJEC3 e e

- -000




Evolution and Strategy

* What was your goal coming here?
- Goal was too ambitious, but we were able to
realign after suggestion from our mentors
- We wanted to develop multi-GPU multi-node
implementation of relational algebra backend

 What was your initial strategy?

- To implement optimized join algorithms for
single GPU in CUDA, then utilize this for MPI +
CUDA in the distributed relational algebra system



Evolution and Strategy

* How did this strategy change?

- We realized we were not knowledgeable enough
of GPU programming yet to create our own very
fast join implementations from scratch in CUDA

- Our mentors set us up with tools/libraries which
provided optimized abstractions (Rapids CuDF,
HashGraph, CuCollections)

- We finished making a python prototype of
transitive closure that utilizes rapids for fast
iterated GPU joins



Evolution and Strategy

. Where are you heading towards?

- We were linked an NVIDIA course (Fundamentals
of Accelerated Computing with CUDA C/C++) that
we completed to improve our CUDA and GPU
programming skills

- Although rapids has good performance, we want
to create our own CUDA backend for an MPI +
CUDA prototype using CUDA aware MPI so that
we can optimize by combining operations specific
to our purpose

- Before this though, want to create a dask-cudf
baseline for multi-gpu joins



Results and Final Profile

* What were you able to accomplish?
. Created rapids TC prototype run on Theta
. Optimized CUDA nested loop join operation on Theta

« What did you learn?

- Many GPU programming best practices i.e. preventing
branch diversion, utilizing multiple compute passes to
improve parallelism, and reducing page faults

- Gained knowledge of many technologies for multi-node
multi-gpu join implementation in the future (NVSHMEM,
HashGraph and CuCollections for optimized CUDA
backend, etc.)



Benchmarks on Theta GPU (NVIDIA A100 - 40536MiB)

Number of rows

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

#Blocks

98

147

196

245

293

342

391

489

538

#Threads

1024

1024

1024

1024

1024

1024

1024

1024

1024

1024

#Result rows

20000986

44995231

80002265

125000004

179991734

245006327

319977044

404982983

499965209

605010431

Pass 1

0.00728293

0.0200516

0.025782

0.0378728

0.045733

0.0704528

0.0807149

0.112455

0.125456

0.138507

Number of rows

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

CUDF time (s)

0.034978

0.023296

0.031487

0.036887

0.039247

0.057324

0.073785

0.088625

0.107790

0.125129

Pandas time (s)
0.294990
0.655962
1.152136
1.785033
2.559597
3.469027
4.536874
5.866922
7.016265

8.476868

Join using CUDF and Pandas

Offset calculation Pass 2
0.00155869 0.0287826
0.00146178 0.0721115
0.00148748 0.105717
0.00147928 0.149159
0.00149265 0.197326
0.00152981 0.258077
0.00183633 0.333223
0.00172126 0.395609
0.00176208 0.47409
0.00185872 0.554933

Nested loop join (non atomic)

Total time

0.0376242

0.0936249

0.132986

0.188511

0.244552

0.330059

0.415774

0.509785

0.601308

0.695299

Number of rows #Blocks
100000 3125 x 3125
150000 4688 x 4688
200000 6250 x 6250
250000 7813 x 7813
300000 9375 x 9375
350000 10938 x 10938
400000 12500 x 12500
450000 14063 x 14063
500000 15625 x 15625
550000 17188 x 17188

#Threads

32x32

32x32

32x32

32x32

32x32

32x32

32x32

32x32

32x32

32x32

#Result rows

20000986

44995381

80002288

125000004

179991734

245006327

319977044

404982983

499965209

605010431

Pass 1

0.0326351

0.0668192

0.10098

0.157802

0.232257

0.307065

0.402273

0.508222

0.626641

0.757276

Offset calculation

3.676e-05

2.085e-05

2.2623e-05

2.129e-05

5.3171e-05

3.0778e-05

3.6008e-05

4.6889e-05

4.8672e-05

6.2097e-05

Nested loop join (atomic)

Pass 2

0.0912985

0.175562

0.311574

0.486814

0.769122

0.955728

1.25115

1.58239

1.95498

2.33137

Total time

0.12397

0.242402

0.412577

0.644637

1.00143

1.26282

1.65346

2.09066

2.58167

3.08871



Number of
rows

550000
550000
550000
550000
550000

#Blocks

8594
4297
2149
1075
538

#Threads

64

128
256
512

1024

#Result
rows

605010431
605010431
605010431
605010431

605010431

Pass 1

0.167814
0.181085
0.173532
0.177913

0.17582

Benchmarks on Theta GPU (NVIDIA A100 - 40536MiB)

Offset
calculation

0.00177992
0.00168487
0.00166867
0.00177223
0.00166037

Pass 2

0.554116

0.549306

0.545732

0.549719

0.561509

Total
time

0.72371

0.732076
0.720933
0.729405

0.738989

Different number of threads and blocks configuration for nested loop join

Number of rows TC size Iterations Time (s)
333 55611 333 1.546973
990 490545 990 11.516639
2990 4471545 2990 48.859073
4444 9876790 4444 98.355756
4990 12452545 4990 121.888416
6990 24433545 6990 263.082299
8990 40414545 8990 536.293174

Transitive closure calculation for string graph datasets



What problems you encountered

* Did not have a unified development
environment
- Some using Windows, linux, older gaming GPUs
to run code

— Difficult to get libraries to work in each
environment

- Started taking increased advantage of Theta
interactive jobs!

* Creating working conda environment on Theta



Wishlist

* What do you wish existed to make your life
easier?
— Documentation on running Conda on theta

- Improved documentation for technologies we
used (CuDF->dask-cudf in particular)



Was it worth it?

* Was this worth it?

. YES

. The DLI course with hands on was very helpful

. We applied the error handling, prefetching,
unified memory, and different configurations to
get better performance

* Will you continue development?
- We will develop CUDA aware MPI for our Datalog
backend

- We will implement multi GPU TC versions using Rapids
dask-cudf



